Do you want to publish a course? Click here

An initial investigation of the performance of GPU-based swept time-space decomposition

279   0   0.0 ( 0 )
 Added by Kyle Niemeyer
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Simulations of physical phenomena are essential to the expedient design of precision components in aerospace and other high-tech industries. These phenomena are often described by mathematical models involving partial differential equations (PDEs) without exact solutions. Modern design problems require simulations with a level of resolution that is difficult to achieve in a reasonable amount of time even in effectively parallelized solvers. Though the scale of the problem relative to available computing power is the greatest impediment to accelerating these applications, significant performance gains can be achieved through careful attention to the details of memory accesses. Parallelized PDE solvers are subject to a trade-off in memory management: store the solution for each timestep in abundant, global memory with high access costs or in a limited, private memory with low access costs that must be passed between nodes. The GPU implementation of swept time-space decomposition presented here mitigates this dilemma by using private (shared) memory, avoiding internode communication, and overwriting unnecessary values. It shows significant improvement in the execution time of the PDE solvers in one dimension achieving speedups of 6-2x for large and small problem sizes respectively compared to naive G



rate research

Read More

We present a highly scalable 3D fully-coupled Earth & ocean model of earthquake rupture and tsunami generation. We model seismic, acoustic and surface gravity wave propagation in elastic (Earth) and acoustic (ocean) materials sourced by physics-based non-linear earthquake dynamic rupture. Complicated geometries, including high-resolution bathymetry, coastlines and segmented earthquake faults are discretized by adaptive unstructured tetrahedral meshes. A Discontinuous Galerkin discretization with ADER local time-stepping (ADER-DG) yields petascale computational efficiency and high-order accuracy in time and space. We compare the 3D fully-coupled approach to a benchmark problem for 3D-2D linked models that use 2D shallow-water modeling. We present a large-scale fully-coupled model of the 2018 Sulawesi events that links the dynamics from supershear earthquake faulting to elastic and acoustic waves in Earth and ocean to tsunami gravity wave propagation in the narrow Palu Bay. And we demonstrate scalability and performance of the MPI+OpenMP parallelization on three petascale supercomputers.
Developing efficient GPU kernels can be difficult because of the complexity of GPU architectures and programming models. Existing performance tools only provide coarse-grained suggestions at the kernel level, if any. In this paper, we describe GPA, a performance advisor for NVIDIA GPUs that suggests potential code optimization opportunities at a hierarchy of levels, including individual lines, loops, and functions. To relieve users of the burden of interpreting performance counters and analyzing bottlenecks, GPA uses data flow analysis to approximately attribute measured instruction stalls to their root causes and uses information about a programs structure and the GPU to match inefficiency patterns with suggestions for optimization. To quantify each suggestions potential benefits, we developed PC sampling-based performance models to estimate its speedup. Our experiments with benchmarks and applications show that GPA provides an insightful report to guide performance optimization. Using GPA, we obtained speedups on a Volta V100 GPU ranging from 1.01$times$ to 3.53$times$, with a geometric mean of 1.22$times$.
WarpX is a general purpose electromagnetic particle-in-cell code that was originally designed to run on many-core CPU architectures. We describe the strategy followed to allow WarpX to use the GPU-accelerated nodes on OLCFs Summit supercomputer, a strategy we believe will extend to the upcoming machines Frontier and Aurora. We summarize the challenges encountered, lessons learned, and give current performance results on a series of relevant benchmark problems.
The MURaM (Max Planck University of Chicago Radiative MHD) code is a solar atmosphere radiative MHD model that has been broadly applied to solar phenomena ranging from quiet to active sun, including eruptive events such as flares and coronal mass ejections. The treatment of physics is sufficiently realistic to allow for the synthesis of emission from visible light to extreme UV and X-rays, which is critical for a detailed comparison with available and future multi-wavelength observations. This component relies critically on the radiation transport solver (RTS) of MURaM; the most computationally intensive component of the code. The benefits of accelerating RTS are multiple fold: A faster RTS allows for the regular use of the more expensive multi-band radiation transport needed for comparison with observations, and this will pave the way for the acceleration of ongoing improvements in RTS that are critical for simulations of the solar chromosphere. We present challenges and strategies to accelerate a multi-physics, multi-band MURaM using a directive-based programming model, OpenACC in order to maintain a single source code across CPUs and GPUs. Results for a $288^3$ test problem show that MURaM with the optimized RTS routine achieves 1.73x speedup using a single NVIDIA V100 GPU over a fully subscribed 40-core Intel Skylake CPU node and with respect to the number of simulation points (in millions) per second, a single NVIDIA V100 GPU is equivalent to 69 Skylake cores. We also measure parallel performance on up to 96 GPUs and present weak and strong scaling results.
We report an efficient algorithm for calculating momentum-space integrals in solid state systems on modern graphics processing units (GPUs). Our algorithm is based on the tetrahedron method, which we demonstrate to be ideally suited for execution in a GPU framework. In order to achieve maximum performance, all floating point operations are executed in single precision. For benchmarking our implementation within the CUDA programming framework we calculate the orbital-resolved density of states in an iron-based superconductor. However, our algorithm is general enough for the achieved improvements to carry over to the calculation of other momentum integrals such as, e.g. susceptibilities. If our program code is integrated into an existing program for the central processing unit (CPU), i.e. when data transfer overheads exist, speedups of up to a factor $sim130$ compared to a pure CPU implementation can be achieved, largely depending on the problem size. In case our program code is integrated into an existing GPU program, speedups over a CPU implementation of up to a factor $sim165$ are possible, even for moderately sized workloads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا