A Universal Multi-Hierarchy Figure-of-Merit for On-Chip Computing and Communications


Abstract in English

Continuing demands for increased compute efficiency and communication bandwidth have led to the development of novel interconnect technologies with the potential to outperform conventional electrical interconnects. With a plurality of interconnect technologies to include electronics, photonics, plasmonics, and hybrids thereof, the simple approach of counting on-chip devices to capture performance is insufficient. While some efforts have been made to capture the performance evolution more accurately, they eventually deviate from the observed development pace. Thus, a holistic figure of merit (FOM) is needed to adequately compare these recent technology paradigms. Here we introduce the Capability-to-Latency-Energy-Amount-Resistance (CLEAR) FOM derived from device and link performance criteria of both active optoelectronic devices and passive components alike. As such CLEAR incorporates communication delay, energy efficiency, on-chip scaling and economic cost. We show that CLEAR accurately describes compute development including most recent machines. Since this FOM is derived bottom-up, we demonstrate remarkable adaptability to applications ranging from device-level to network and system-level. Applying CLEAR to benchmark device, link, and network performance against fundamental physical compute and communication limits shows that photonics is competitive even for fractions of the die-size, thus making a case for on-chip optical interconnects.

Download