No Arabic abstract
Scientific discoveries are increasingly driven by analyzing large volumes of image data. Many new libraries and specialized database management systems (DBMSs) have emerged to support such tasks. It is unclear, however, how well these systems support real-world image analysis use cases, and how performant are the image analytics tasks implemented on top of such systems. In this paper, we present the first comprehensive evaluation of large-scale image analysis systems using two real-world scientific image data processing use cases. We evaluate five representative systems (SciDB, Myria, Spark, Dask, and TensorFlow) and find that each of them has shortcomings that complicate implementation or hurt performance. Such shortcomings lead to new research opportunities in making large-scale image analysis both efficient and easy to use.
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we construct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represents one unit of computation, and big data workloads are decomposed into one or more dwarfs. Furthermore, dwarfs workloads rather than vast real workloads are more cost-efficient and representative to evaluate big data systems. In this paper, we extensively investigate six most important or emerging application domains i.e. search engine, social network, e-commerce, multimedia, bioinformatics and astronomy. After analyzing forty representative algorithms, we single out eight dwarfs workloads in big data analytics other than OLAP, which are linear algebra, sampling, logic operations, transform operations, set operations, graph operations, statistic operations and sort.
Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analytics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.
While manufacturers have been generating highly distributed data from various systems, devices and applications, a number of challenges in both data management and data analysis require new approaches to support the big data era. These challenges for industrial big data analytics is real-time analysis and decision-making from massive heterogeneous data sources in manufacturing space. This survey presents new concepts, methodologies, and applications scenarios of industrial big data analytics, which can provide dramatic improvements in velocity and veracity problem solving. We focus on five important methodologies of industrial big data analytics: 1) Highly distributed industrial data ingestion: access and integrate to highly distributed data sources from various systems, devices and applications; 2) Industrial big data repository: cope with sampling biases and heterogeneity, and store different data formats and structures; 3) Large-scale industrial data management: organizes massive heterogeneous data and share large-scale data; 4) Industrial data analytics: track data provenance, from data generation through data preparation; 5) Industrial data governance: ensures data trust, integrity and security. For each phase, we introduce to current research in industries and academia, and discusses challenges and potential solutions. We also examine the typical applications of industrial big data, including smart factory visibility, machine fleet, energy management, proactive maintenance, and just in time supply chain. These discussions aim to understand the value of industrial big data. Lastly, this survey is concluded with a discussion of open problems and future directions.
Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First, we need to thoroughly understand the behaviors of a variety of workloads. Second, our usual simulation-based research methods become prohibitively expensive for big data. As big data is an emerging field, more and more software stacks are being proposed to facilitate the development of big data applications, which aggravates hese challenges. In this paper, we first use Principle Component Analysis (PCA) to identify the most important characteristics from 45 metrics to characterize big data workloads from BigDataBench, a comprehensive big data benchmark suite. Second, we apply a clustering technique to the principle components obtained from the PCA to investigate the similarity among big data workloads, and we verify the importance of including different software stacks for big data benchmarking. Third, we select seven representative big data workloads by removing redundant ones and release the BigDataBench simulation version, which is publicly available from http://prof.ict.ac.cn/BigDataBench/simulatorversion/.
In recent years, the size of big linked data has grown rapidly and this number is still rising. Big linked data and knowledge bases come from different domains such as life sciences, publications, media, social web, and so on. However, with the rapid increasing of data, it is very challenging for people to acquire a comprehensive collection of cross domain knowledge to meet their needs. Under this circumstance, it is extremely difficult for people without expertise to extract knowledge from various domains. Therefore, nowadays human limited knowledge cant feed the high requirement for discovering large amount of cross domain knowledge. In this research, we present a big graph analytics framework aims at addressing this issue by providing semantic methods to facilitate the management of big graph data from close domains in order to discover cross domain knowledge in a more accurate and efficient way.