No Arabic abstract
Crystallographic alignment between two-dimensional crystals in van der Waals heterostructures brought a number of profound physical phenomena, including observation of Hofstadter butterfly and topological currents, and promising novel applications, such as resonant tunnelling transistors. Here, by probing the electronic density of states in graphene using graphene-hexagonal boron nitride tunnelling transistors, we demonstrate a structural transition of bilayer graphene from incommensurate twisted stacking state into a commensurate AB stacking due to a macroscopic graphene self-rotation. This structural transition is accompanied by a topological transition in the reciprocal space and by pseudospin texturing. The stacking transition is driven by van der Waals interaction energy of the two graphene layers and is thermally activated by unpinning the microscopic chemical adsorbents which are then removed by the self-cleaning of graphene.
We study the role of thermal fluctuations on the spin dynamics of a thin permalloy film with a focus on the behavior of spin torque and find that the thermally assisted spin torque results in new aspects of the magnetization dynamics. In particular, we uncover the formation of a finite, spin torque-induced, in-plane magnetization component. The orientation of the in-plane magnetization vector depends on the temperature and the spin-torque coupling. We investigate and illustrate that the variation of the temperature leads to a thermally-induced rotation of the in-plane magnetization.
It is shown theoretically that the renormalization of the electron energy spectrum of bilayer graphene with a strong high-frequency electromagnetic field (dressing field) results in the Lifshitz transition - the abrupt change in the topology of the Fermi surface near the band edge. This effect substantially depends on the polarization of the field: The linearly polarized dressing field induces the Lifshitz transition from the quadruply-connected Fermi surface to the doubly-connected one, whereas the circularly polarized field induces the multicritical point, where the four different Fermi topologies may coexist. As a consequence, the discussed phenomenon creates physical basis to control the electronic properties of bilayer graphene with light.
2D ferroelectrics with robust polarization down to atomic thicknesses provide novel building blocks for functional heterostructures. Experimental reports, however, remain scarce because of the requirement of a layered polar crystal. Here, we demonstrate a rational design approach to engineering 2D ferroelectrics from a non-ferroelectric parent compound via employing van der Waals assembly. Parallel-stacked bilayer boron nitride is shown to exhibit out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed via the resistance of an adjacently-stacked graphene sheet. Furthermore, twisting the boron nitride sheets by a small-angle changes the dynamics of switching due to the formation of moire ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.
The electronic properties and optical excitations are investigated in the geometry- and field-modulated bilayer graphene systems, respectively, by using the tight-binding model and Kubo formula. The stacking symmetry of bilayer graphene can be manipulated by varying the width and position of domain wall (DW) within two normally stacked graphene. All the layer-dependent atomic interactions are taken into consideration under external fields. The modulation of stacking configuration gives rise to significant effects of zone folding on energy subbands, subenvelope wave functions, density of states, and optical absorption spectra. This study clearly illustrates the diverse 1D phenomena in the energy band structure and absorption spectra; the DW- and $V_z$-created dramatic variations are comprehensively explored under accurate calculations and delicate analysis. Concise physical pictures are proposed to give further insight into the quasi-1D behaviors.
Umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals. However, umklapp scattering has proven to be elusive in experiment as it is easily obscured by other dissipation mechanisms. Here we show that electron-electron umklapp scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a wide range of temperatures and carrier densities. The umklapp processes cause giant excess resistivity that rapidly increases with increasing the superlattice period and are responsible for deterioration of the room-temperature mobility by more than an order of magnitude as compared to standard, non-superlattice graphene devices. The umklapp scattering exhibits a quadratic temperature dependence accompanied by a pronounced electron-hole asymmetry with the effect being much stronger for holes rather than electrons. Aside from fundamental interest, our results have direct implications for design of possible electronic devices based on heterostructures featuring superlattices.