Do you want to publish a course? Click here

Directional limits on persistent gravitational waves from Advanced LIGOs first observing run

85   0   0.0 ( 0 )
 Added by Letizia Sammut
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ gravitational-wave radiometry to map the gravitational waves stochastic background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from Advanced LIGOs first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20 - 1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range $F_{alpha,Theta}(f) < (0.1 - 56) times 10^{-8}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ (f/25 Hz)$^{alpha-1}$ depending on the sky location $Theta$ and the spectral power index $alpha$. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of $Omega(f,Theta) < (0.39-7.6) times 10^{-8}$ sr$^{-1}$ (f/25 Hz)$^alpha$ depending on $Theta$ and $alpha$. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of $h_0 <$ (6.7, 5.5, and 7.0) $times 10^{-25}$ respectively, at the most sensitive detector frequencies between 130 - 175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.



rate research

Read More

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGOs first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $Omega_0<1.7times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25~Hz from point sources with a power law spectrum at $F_{alpha,Theta} <(0.05-25)times 10^{-8} ~{rm erg,cm^{-2},s^{-1},Hz^{-1}}$ and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at $Omega_{alpha}(Theta) <(0.19-2.89)times 10^{-8} ~{rm sr^{-1}}$ where $alpha$ is the spectral index of the energy density spectrum. These represent improvements of $2.5-3times$ over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic Center. The best upper limits on the strain amplitude of a potential source in these three directions range from $h_0 < (3.6-4.7)times 10^{-25}$, 1.5$times$ better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06~Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGOs and Advanced Virgos third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $Omega_{rm GW}leq 5.8times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; $leq 3.4 times 10^{-9}$ at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and $leq 3.9 times 10^{-10}$ at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries. Finally, we combine our results with observations of individual mergers andshow that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at $z lesssim 2$ than can be achieved with individually resolved mergers alone. [abridged]
Persistent gravitational waves from rapidly rotating neutron stars, such as those found in some young supernova remnants, may fall in the sensitivity band of the advanced Laser Interferometer Gravitational-wave Observatory (aLIGO). Searches for these signals are computationally challenging, as the frequency and frequency derivative are unknown and evolve rapidly due to the youth of the source. A hidden Markov model (HMM), combined with a maximum-likelihood matched filter, tracks rapid frequency evolution semi-coherently in a computationally efficient manner. We present the results of an HMM search targeting 12 young supernova remnants in data from Advanced LIGOs second observing run. Six targets produce candidates that are above the search threshold and survive pre-defined data quality vetoes. However, follow-up analyses of these candidates show that they are all consistent with instrumental noise artefacts.
We present a search for gravitational waves from double neutron star binaries inspirals in Advanced LIGOs first observing run. The search considers a narrow range of binary chirp masses motivated by the population of known double neutron star binaries in the nearby universe. This search differs from previously published results by providing the most sensitive published survey of neutron stars in Advanced LIGOs first observing run within this narrow mass range and including times when only one of the two LIGO detectors was in operation in the analysis. The search was sensitive to binary neutron star inspirals to an average distance of ~85 Mpc over 93.2 days. We do not identify any unambiguous gravitational wave signals in our sample of 103 sub-threshold candidates with false-alarm-rates of less than one per day. However, given the expected binary neutron star merger rate of R = 100 - 4000 Gpc^(-3) yr^(-1), we expect O(1) gravitational wave events within our candidate list. This suggests the possibility that one or more of these candidates is in fact a binary neutron star merger. Although the contamination fraction in our candidate list is ~99%, it might be possible to correlate these events with other messengers to identify a potential multi-messenger signal. We provide an online candidate list with the times and sky locations for all events in order to enable multi-messenger searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا