Validating pore-scale models of drying using microfluidic experiments


Abstract in English

We present an experimental micro-model of drying porous media, based on microfluidic cells made of arrays of pillars on a regular grid, and complement these experiments with a matching two-dimensional pore-network model of drying. Disorder, or small-scale heterogeneity, was introduced into the cells by randomly varying the radii of the pillars, around their average value. The microfluidic chips were filled with a volatile oil and then dried horizontally, such that gravitational effects were excluded. The experimental and simulated drying rates and drying patterns were then compared in detail, for various levels of disorder, in order to verify the predictive capabilities of our model. The geometrical features were reproduced well, while reproducing drying rates proved to be more challenging.

Download