No Arabic abstract
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate heralded photon amplification for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting heralded photon amplification we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50~km.
In this work we propose the generation of a hybrid entangled resource (HER) and its further application in a quantum teleportation scheme from an experimentally feasible point of view. The source for HER preparation is based on the four wave mixing process in a photonic crystal fiber, from which one party of its output bipartite state is used to herald a single photon or a single photon added coherent state. From the heralded state and linear optics the HER is created. In the proposed teleportation protocol Bob uses the HER to teleport qubits with different spectral properties. Bob makes a Bell measurement in the single photon basis and characterizes the scheme with its average quantum teleportation fidelity. Fidelities close to one are expected for qubits in a wide spectral range. The work also includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated. An important remark is that no spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
We demonstrate heralded qubit amplification for Time-Bin and Fock-state qubits in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, the stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, the fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded Fock-state qubit amplifier without post-selection. This provides a significant advance towards demonstrating Device-Independent Quantum Key Distribution as well as fundamental tests of quantum mechanics over extended distances.
We examine the behavior of non-Gaussian states of light under the action of probabilistic noiseless amplification and attenuation. Surprisingly, we find that the mean field amplitude may decrease in the process of noiseless amplification -- or increase in the process of noiseless attenuation, a counterintuitive effect that Gaussian states cannot exhibit. This striking phenomenon could be tested with experimentally accessible non-Gaussian states, such as single-photon added coherent states. We propose an experimental scheme, which is robust with respect to the major experimental imperfections such as inefficient single-photon detection and imperfect photon addition. In particular, we argue that the observation of mean field amplification by noiseless attenuation should be feasible with current technology.
Although the path-integral formalism is known to be equivalent to conventional quantum mechanics, it is not generally obvious how to implement path-based calculations for multi-qubit entangled states. Whether one takes the formal view of entangled states as entities in a high-dimensional Hilbert space, or the intuitive view of these states as a connection between distant spatial configurations, it may not even be obvious that a path-based calculation can be achieved using only paths in ordinary space and time. Previous work has shown how to do this for certain special states; this paper extends those results to all pure two-qubit states, where each qubit can be measured in an arbitrary basis. Certain three-qubit states are also developed, and path integrals again reproduce the usual correlations. These results should allow for a substantial amount of conventional quantum analysis to be translated over into a path-integral perspective, simplifying certain calculations, and more generally informing research in quantum foundations.
Multiphoton entanglement, as a quantum resource, plays an essential role in linear optical quantum information processing. Krenn et al. (Phys. Rev. Lett. 118, 080401 2017) proposed an innovative scheme that generating entanglement by path identity, in which two-photon interference (called Hong-Ou-Mandel effect) is not necessary in experiment. However, the experiments in this scheme have strict requirements in stability and scalability, which is difficult to be realized in bulk optics. To solve this problem, in this paper we first propose an on-chip scheme to generate multi-photon polarization entangled states, including Greenberger-Horne-Zeilinger (GHZ) states and W states. Moreover, we also present a class of generalized graphs for W states (odd-number-photon) by path identity in theory. The on-chip scheme can be implemented in existing integrated optical technology which is meaningful for multi-party entanglement distribution in quantum communication networks.