Do you want to publish a course? Click here

Dynamical realization of magnetic states in a strongly interacting Bose mixture

98   0   0.0 ( 0 )
 Added by Rafael Barfknecht
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the dynamical preparation of magnetic states in a strongly interacting two-component Bose gas in a harmonic trap. By mapping this system to an effective spin chain model, we obtain the dynamical spin densities and the fidelities for a few-body system. We show that the spatial profiles transit between ferromagnetic and antiferromagnetic states as the intraspecies interaction parameter is slowly increased.



rate research

Read More

We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared to the single-well case.
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of $^{87}$Rb with a much lower density gas of fermionic $^{40}$K impurities. Through the use of a Feshbach resonance and RF spectroscopy, we characterize the energy, spectral width and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length formally diverges.
136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within same site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
We report on the expansion of a Fermi-Fermi mixture of Li-6 and K-40 atoms under conditions of strong interactions realized near the center of an interspecies Feshbach resonance. We observe two different phenomena of hydrodynamic behavior. The first one is the well-known inversion of the aspect ratio. The second one is a collective expansion, where both species stick together and despite of their different masses expand jointly. Our work constitutes a first step to explore the intriguing many-body physics of this novel system.
The recent experimental realization of Bose-Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons and fermions, a uniform Bose-Fermi mixture is predicted to exhibit a fully mixed phase, a fully separated phase or, in addition, a purely fermionic phase coexisting with a mixed phase. The occurrence of this intermediate configuration has interesting consequences when the system is nonuniform. In this work we theoretically investigate the case of solitonic solutions of coupled Bogoliubov-de Gennes and Gross-Pitaevskii equations for the fermionic and bosonic components, respectively. We show that, in the partially separated phase, a dark soliton in Fermi superfluid is accompanied by a broad bosonic component in the soliton, forming a dark-bright soliton which keeps full spatial coherence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا