Light-hole Exciton in Nanowire Quantum Dot


Abstract in English

Quantum dots inserted inside semiconductor nanowires are extremely promising candidates as building blocks for solid-state based quantum computation and communication. They provide very high crystalline and optical properties and offer a convenient geometry for electrical contacting. Having a complete determination and full control of their emission properties is one of the key goals of nanoscience researchers. Here we use strain as a tool to create in a single magnetic nanowire quantum dot a light-hole exciton, an optically active quasiparticle formed from a single electron bound to a single light hole. In this frame, we provide a general description of the mixing within the hole quadruplet induced by strain or confinement. A multi-instrumental combination of cathodoluminescence, polarisation-resolved Fourier imaging and magneto-optical spectroscopy, allow us to fully characterize the hole ground state, including its valence band mixing with heavy hole states.

Download