Do you want to publish a course? Click here

Lupus disks with faint CO isotopologues: low gas/dust or large carbon depletion?

84   0   0.0 ( 0 )
 Added by Anna Miotello
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An era has started in which gas and dust can be observed independently in protoplanetary disks, thanks to the recent surveys with ALMA. The first near-complete high-resolution disk survey in both dust and gas in a single star-forming region has been carried out in Lupus, finding surprisingly low gas/dust ratios. The goal of this work is to fully exploit CO isotopologues observations in Lupus, comparing them with physical-chemical model results, in order to obtain gas masses for a large number of disks. We have employed physical-chemical models to analyze continuum and CO isotopologues observations of Lupus disks, including isotope-selective processes and freeze-out. Employing also the ALMA 13CO-only detections, disk gas masses have been calculated for a total of 34 sources, expanding the sample of 10 disks studied by Ansdell et al. (2016), where also C18O was detected. We confirm that overall gas-masses are very low, often smaller than 1 $M_{rm J}$, if volatile carbon is not depleted. Accordingly, global gas/dust ratios predominantly between 1 and 10. Low CO-based gas masses and gas/dust ratios may indicate rapid loss of gas, or alternatively chemical evolution, e.g. via sequestering of carbon from CO to more complex molecules, or carbon locked up in larger bodies. Current ALMA observations cannot distinguish between these two hypotheses. We have simulated both scenarios, but chemical model results do not allow us to rule out one of the two. Assuming that all Lupus disks have evolved mainly due to viscous processes over the past few Myr, the observed correlation between the current mass accretion rate and dust mass found by Manara et al. (2016) implies a constant gas-to-dust ratio, which is close to 100 based on the observed $M_{rm disk}/dot{M}_{rm acc}$ ratio. This in turn points to a scenario in which carbon depletion is responsible for the low CO isotopologue line luminosities.



rate research

Read More

A large fraction of observed protoplanetary disks in nearby Star-Forming Regions (SFRs) are fainter than expected in CO isotopologue emission. Disks not detected in 13CO line emission are also faint and often unresolved in the continuum emission at an angular resolution of around 0.2 arcseconds. Focusing on the Lupus SFR, the aim of this work is to investigate whether the population of CO-faint disks comprises radially extended and low mass disks - as commonly assumed so far - or if it is of intrinsically radially compact disks, an interpretation that we propose in this paper. The latter scenario was already proposed for individual sources or small samples of disks, while this work targets a large population of disks in a single SFR for which statistical arguments can be made. A new grid of physical-chemical models of compact disks has been run with DALI in order to cover a region of the parameter space that had not been explored before with this code. Such models have been compared with 12CO and 13CO ALMA observations of faint disks in Lupus. Disks that are not detected in 13CO emission and with faint or undetected 12CO emission are consistent with compact disk models. For radially compact disk, the emission of CO isotopologues is mostly optically thick and it scales with the surface area: i.e., it is fainter for smaller objects. The fraction of compact disks is potentially between roughly 50% and 60% of the entire Lupus sample. Deeper observations of 12CO and 13CO at a moderate angular resolution will allow us to distinguish whether faint disks are intrinsically compact, or if they are extended but faint, without the need of resolving them. If the fainter end of the disk population observed by ALMA disk surveys is consistent with such objects being very compact, this will either create a tension with viscous spreading or require MHD winds or external processes to truncate the disks.
Transitional disks around young stars are promising candidates to look for recently formed, embedded planets. Planet-disk interaction models predict that planets clear a gap in the gas while trapping dust at larger radii. Other physical mechanisms could be responsible for cavities as well. Previous observations have revealed that gas is still present inside these cavities, but the spatial distribution of this gas remains uncertain. We present high spatial resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of 13CO and C18O lines of four well-studied transitional disks. The observations are used to set constraints on the gas surface density, specifically cavity size and density drop inside the cavity. The physical-chemical model DALI is used to analyze the gas images of SR21, HD135344B, DoAr44 and IRS48. The main parameters of interest are the size, depth and shape of the gas cavity. CO isotope-selective photodissociation is included to properly constrain the surface density in the outer disk from C18O emission. The gas cavities are up to 3 times smaller than those of the dust in all four disks. Model fits indicate that the surface density inside the gas cavities decreases by a factor of 100-10000 compared with the surface density profile derived from the outer disk. A comparison with an analytical model of gap depths by planet-disk interaction shows that the disk viscosities are likely low, with a<1E-3 for planet masses <10 MJup. The resolved measurements of the gas and dust in transition disk cavities support the predictions of models that describe how planet-disk interactions sculpt gas disk structures and influence the evolution of dust grains. These observed structures strongly suggest the presence of giant planetary companions in transition disk cavities, although at smaller orbital radii than is typically indicated from the dust cavity radii alone.
We present first results of neutral carbon ([CI], 3P1 - 3P0 at 492 GHz) and carbon monoxide (13CO, J = 1 - 0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [CI] has very similar spectral emission profiles to 13CO, with comparable line widths. We find that [CI] has opacity of 0.1 - 1.3 across the mapped region while the [CI]/13CO peak brightness temperature ratio is between 0.2 to 0.8. The [CI] column density is an order of magnitude lower than that of 13CO. The H2 column density derived from [CI] is comparable to values obtained from 12CO. Our maps show CI is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H2 column density calculated from both tracers (both CI and 12CO underestimate column density), as a significant amount of the CI in the warmer gas is likely in the higher energy state transition ([CI], 3P2 - 3P1 at 810 GHz), and thus it is likely that observations of both the above [CI] transitions are needed in order to recover the total H2 column density.
We present the first high-resolution sub-mm survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use ALMA to survey 89 protoplanetary disks around stars with $M_{ast}>0.1~M_{odot}$ in the young (1--3~Myr), nearby (150--200~pc) Lupus complex. Our observations cover the 890~$mu$m continuum and the $^{13}$CO and C$^{18}$O 3--2 lines. We use the sub-mm continuum to constrain $M_{rm dust}$ to a few Martian masses (0.2--0.4~$M_{oplus}$) and the CO isotopologue lines to constrain $M_{rm gas}$ to roughly a Jupiter mass (assuming ISM-like $rm {[CO]/[H_2]}$ abundance). Of 89 sources, we detect 62 in continuum, 36 in $^{13}$CO, and 11 in C$^{18}$O at $>3sigma$ significance. Stacking individually undetected sources limits their average dust mass to $lesssim6$ Lunar masses (0.03~$M_{oplus}$), indicating rapid evolution once disk clearing begins. We find a positive correlation between $M_{rm dust}$ and $M_{ast}$, and present the first evidence for a positive correlation between $M_{rm gas}$ and $M_{ast}$, which may explain the dependence of giant planet frequency on host star mass. The mean dust mass in Lupus is 3$times$ higher than in Upper Sco, while the dust mass distributions in Lupus and Taurus are statistically indistinguishable. Most detected disks have $M_{rm gas}lesssim1~M_{rm Jup}$ and gas-to-dust ratios $<100$, assuming ISM-like $rm {[CO]/[H_2]}$ abundance; unless CO is very depleted, the inferred gas depletion indicates that planet formation is well underway by a few Myr and may explain the unexpected prevalence of super-Earths in the exoplanet population.
72 - E. Sanchis , L. Testi , A. Natta 2021
We perform a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds, in order to find indications of dust evolution and possible correlations with other properties. We increase up to 42 the number of disks of the region with measured CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$) from observations with the Atacama Large Millimeter/submillimeter Array (ALMA). The sizes are obtained from modeling the ${^{12}}$CO $J = 2-1$ line emission and continuum emission at $sim 0.89$ mm with an empirical function (Nuker profile or Gaussian function). The CO emission is more extended than the dust continuum, with a $R_{68%}^{mathrm{CO}}$/$R_{68%}^{mathrm{dust}}$ median value of 2.5, for the entire population and for a sub-sample with high completeness. 6 disks, around $15%$ of the Lupus disk population have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties in terms of stellar mass ($M_{star}$), disk mass ($M_{mathrm{disk}}$), CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$), and mass accretion. We search for correlations between the size ratio and $M_{star}$, $M_{mathrm{disk}}$, $R_{mathrm{CO}}$ and $R_{mathrm{dust}}$: only a weak monotonic anti-correlation with the $R_{mathrm{dust}}$ is found. The lack of strong correlations is remarkable and suggests that the bulk of the population may be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum may play a role in the inferred size ratios. Lastly, the CO emission for the majority of the disks is consistent with optically thick emission and an average CO temperature of around 30 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا