On the Distinguishing number of Functigraphs


Abstract in English

Let $G_{1}$ and $G_{2}$ be disjoint copies of a graph $G$, and let $g:V(G_{1})rightarrow V(G_{2})$ be a function. A functigraph $F_{G}$ consists of the vertex set $V(G_{1})cup V(G_{2})$ and the edge set $E(G_{1})cup E(G_{2})cup {uv:g(u)=v}$. In this paper, we extend the study of the distinguishing number of a graph to its functigraph. We discuss the behavior of the distinguishing number in passing from $G$ to $F_{G}$ and find its sharp lower and upper bounds. We also discuss the distinguishing number of functigraphs of complete graphs and join graphs.

Download