Do you want to publish a course? Click here

Mass-scaling as a method to constrain outflows and particle acceleration from low-luminosity accreting black holes

86   0   0.0 ( 0 )
 Added by Riley Connors
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The `fundamental plane of black hole accretion (FP), a relation between the radio luminosities ($L_R$), X-ray luminosities ($L_X$), and masses ($M_{BH}$) of hard/quiescent state black hole binaries and low-luminosity active galactic nuclei, suggests some aspects of black hole accretion may be scale invariant. However, key questions still exist concerning the relationship between the inflow/outflow behaviour in the `classic hard state and quiescence, which may impact this scaling. We show that the broadband spectra of A0620-00 and~sgra~(the least luminous stellar mass/supermassive black holes on the FP) can be modelled simultaneously with a physically-motivated outflow-dominated model where the jet power and all distances are scaled by the black hole mass. We find we can explain the data of both A0620-00 and~sgra~(in its non-thermal flaring state) in the context of two outflow-model scenarios: (1) a synchrotron-self-Compton dominated state in which the jet plasma reaches highly sub-equipartition conditions (for the magnetic field with respect to that of the radiating particles), and (2) a synchrotron dominated state in the fast-cooling regime in which particle acceleration occurs within the inner few gravitational radii of the black hole and plasma is close to equipartition. We show that it may be possible to further discriminate between models (1) and (2) through future monitoring of its submm/IR/X-ray emission, in particular via time lags between the variable emission in these bands.



rate research

Read More

In this work we have developed a new stochastic model for the fluctuations in lightcurves of accreting black holes. The model is based on a linear combination of stochastic processes and is also the solution to the linear diffusion equation perturbed by a spatially correlated noise field. This allows flexible modeling of the power spectral density (PSD), and we derive the likelihood function for the process, enabling one to estimate the parameters of the process, including break frequencies in the PSD. Our statistical technique is computationally efficient, unbiased by aliasing and red noise leak, and fully accounts for irregular sampling and measurement errors. We show that our stochastic model provides a good approximation to the X-ray lightcurves of galactic black holes, and the optical and X-ray lightcurves of AGN. We use the estimated time scales of our stochastic model to recover the correlation between characteristic time scale of the high frequency X-ray fluctuations and black hole mass for AGN, including two new `detections of the time scale for Fairall 9 and NGC 5548. We find a tight anti-correlation between the black hole mass and the amplitude of the driving noise field, which is proportional to the amplitude of the high frequency X-ray PSD, and we estimate that this parameter gives black hole mass estimates to within ~ 0.2 dex precision, potentially the most accurate method for AGN yet. We also find evidence that ~ 13% of AGN optical PSDs fall off flatter than 1 / f^2, and, similar to previous work, find that the optical fluctuations are more suppressed on short time scales compared to the X-rays, but are larger on long time scales, suggesting the optical fluctuations are not solely due to reprocessing of X-rays.
71 - Davide Fiacconi 2017
The nature of ultraluminous X-ray sources (ULXs) -- off-nuclear extra-galactic sources with luminosity, assumed isotropic, $gtrsim 10^{39}$ erg s$^{-1}$ -- is still debated. One possibility is that ULXs are stellar black holes accreting beyond the Eddington limit. This view has been recently reinforced by the discovery of ultrafast outflows at $sim 0.1$-$0.2c$ in the high resolution spectra of a handful of ULXs, as predicted by models of supercritical accretion discs. Under the assumption that ULXs are powered by super-Eddington accretion onto black holes, we use the properties of the observed outflows to self-consistently constrain their masses and accretion rates. We find masses $lesssim 100$ M$_{odot}$ and typical accretion rates $sim 10^{-5}$ M$_{odot}$ yr$^{-1}$, i.e. $approx 10$ times larger than the Eddington limit calculated with a radiative efficiency of 0.1. However, the emitted luminosity is only $approx 10%$ beyond the Eddington luminosity, because most of the energy released in the inner part of the accretion disc is used to accelerate the wind, which implies radiative efficiency $sim 0.01$. Our results are consistent with a formation model where ULXs are black hole remnants of massive stars evolved in low-metallicity environments.
I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.
We investigate the global properties of the radiation emitted by the accretion disk around Kerr black holes. Using the Kerr blackbody (KERRBB) numerical model, we build an analytic approximation of the disk emission features focusing on the pattern of the produced radiation as a function of the black hole spin, mass, accretion rate and viewing angle. The assumption of having a geometrically thin disk limits our analysis to systems emitting below ~0.3 of the Eddington luminosity. We apply this analytical model to four blazars (whose jets are pointing at us) at high redshift that show clear signatures of disk emission. For them, we derive the black hole masses as a function of spin. If these jetted sources are powered by the black hole rotation, they must have high spin values, further constraining their masses.
115 - Rob Fender 2014
In this book chapter, we will briefly review the current empirical understanding of the relation between accretion state and and outflows in accreting stellar mass black holes. The focus will be on the empirical connections between X-ray states and relativistic (`radio) jets, although we are now also able to draw accretion disc winds into the picture in a systematic way. We will furthermore consider the latest attempts to measure/order jet power, and to compare it to other (potentially) measurable quantities, most importantly black hole spin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا