Do you want to publish a course? Click here

Recovering planet radial velocity signals in the presence of starspot activity in fully convective stars

80   0   0.0 ( 0 )
 Added by John Barnes
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accounting for stellar activity is a crucial component of the search for ever-smaller planets orbiting stars of all spectral types. We use Doppler imaging methods to demonstrate that starspot induced radial velocity variability can be effectively reduced for moderately rotating, fully convective stars. Using starspot distributions extrapolated from sunspot observations, we adopt typical M dwarf starspot distributions with low contrast spots to synthesise line profile distortions. The distortions are recovered using maximum entropy regularised fitting and the corresponding stellar radial velocities are measured. The procedure is demonstrated for a late-M star harbouring an orbiting planet in the habitable zone. The technique is effective for stars with vsini = 1-10 km/s, reducing the stellar noise contribution by factors of nearly an order of magnitude. With a carefully chosen observing strategy, the technique can be used to determine the stellar rotation period and is robust to uncertainties such as unknown stellar inclination. While demonstrated for late-type M stars, the procedure is applicable to all spectral types.



rate research

Read More

70 - Petri J. Kapyla 2020
(abridged) Context: Main-sequence late-type stars with masses less than $0.35 M_odot$ are fully convective. Aims: The goal is to study convection, differential rotation, and dynamos as functions of rotation in fully convective stars. Methods: Three-dimensional hydrodynamic and magnetohydrodynamic numerical simulations with a star-in-a-box model, where a spherical star is immersed inside of a Cartesian cube, are used. The model corresponds to a $0.2M_odot$ M5 dwarf. Rotation periods ($P_{rm rot}$) between 4.3 and 430 days are explored. Results: The slowly rotating model with $P_{rm rot}=430$ days produces anti-solar differential rotation with a slow equator and fast poles, along with predominantly axisymmetric quasi-steady large-scale magnetic fields. For intermediate rotation ($P_{rm rot}=144$ and $43$ days) differential rotation is solar-like (fast equator, slow poles) and large-scale magnetic fields are mostly axisymmetric and either quasi-stationary or cyclic. The latter occurs in a similar parameter regime as in other numerical studies in spherical shells, and the cycle period is similar to observed cycles in fully convective stars with comparable $P_{rm rot}$. In the rapid rotation regime the differential rotation is weak and the large-scale magnetic fields are increasingly non-axisymmetric with a dominating $m=1$ mode. This large-scale non-axisymmetric field also exhibits azimuthal dynamo waves. Conclusions: The results of the star-in-a-box models agree with simulations of partially convective late-type stars in spherical shells in that the transitions in differential rotation and dynamo regimes occur at similar rotational regimes in terms of the Coriolis (inverse Rossby) number. This similarity between partially and fully convective stars suggests that the processes generating differential rotation and large-scale magnetism are insensitive to the geometry of the star.
The CoRoT satellite has recently discovered the transits of a telluric planet across the disc of a late-type magnetically active star dubbed CoRoT-7, while a second planet has been detected after filtering out the radial velocity (hereafter RV) variations due to stellar activity. We investigate the magnetic activity of CoRoT-7 and use the results for a better understanding of its impact on stellar RV variations. We derive the longitudinal distribution of active regions on CoRoT-7 from a maximum entropy spot model of the CoRoT light curve. Assuming that each active region consists of dark spots and bright faculae in a fixed proportion, we synthesize the expected RV variations. Active regions are mainly located at three active longitudes which appear to migrate at different rates, probably as a consequence of surface differential rotation, for which a lower limit of Delta Omega / Omega = 0.058 pm 0.017 is found. The synthesized activity-induced RV variations reproduce the amplitude of the observed RV curve and are used to study the impact of stellar activity on planetary detection. In spite of the non-simultaneous CoRoT and HARPS observations, our study confirms the validity of the method previously adopted to filter out RV variations induced by stellar activity. We find a false-alarm probability < 0.01 percent that the RV oscillations attributed to CoRoT-7b and CoRoT-7c are spurious effects of noise and activity. Additionally, our model suggests that other periodicities found in the observed RV curve of CoRoT-7 could be explained by active regions whose visibility is modulated by a differential stellar rotation with periods ranging from 23.6 to 27.6 days.
We report initial results from our long term search using precision radial velocities for planetary-mass companions located within a few AU of stars younger than the Sun. Based on a sample of >150 stars, we define a floor in the radial velocity scatter, sigma_RV, as a function of the chromospheric activity level R_{HK}. This lower bound to the jitter, which increases with increasing stellar activity, sets the minimum planet mass that could be detected. Adopting a median activity-age relationship reveals the astrophysical limits to planet masses discernable via radial velocity monitoring, as a function of stellar age. Considering solar-mass primaries having the mean jitter-activity level, when they are younger than 100 / 300 / 1000 Myr, the stochastic jitter component in radial velocity measurements restricts detectable companion masses to > 0.3 / 0.2 / 0.1 M_Jupiter. These numbers require a large number -- several tens -- of radial velocity observations taken over a time frame longer than the orbital period. Lower companion mass limits can be achieved for stars with less than the mean jitter and/or with an increased number of observations.
125 - Artie P. Hatzes 2013
We present an analysis of the publicly available HARPS radial velocity (RV) measurements for Alpha Cen B, a star hosting an Earth-mass planet candidate in a 3.24 day orbit. The goal is to devise robust ways of extracting low-amplitude RV signals of low mass planets in the presence of activity noise. Two approaches were used to remove the stellar activity signal which dominates the RV variations: 1) Fourier component analysis (pre-whitening), and 2) local trend filtering (LTF) of the activity using short time windows of the data. The Fourier procedure results in a signal at P = 3.236 days and K = 0.42 m/s which is consistent with the presence of an Earth-mass planet, but the false alarm probability for this signal is rather high at a few percent. The LTF results in no significant detection of the planet signal, although it is possible to detect a marginal planet signal with this method using a different choice of time windows and fitting functions. However, even in this case the significance of the 3.24-d signal depends on the details of how a time window containing only 10% of the data is filtered. Both methods should have detected the presence of Alpha Cen Bb at a higher significance than is actually seen. We also investigated the influence of random noise with a standard deviation comparable to the HARPS data and sampled in the same way. The distribution of the noise peaks in the period range 2.8 - 3.3 days have a maximum of approximately 3.2 days and amplitudes approximately one-half of the K-amplitude for the planet. The presence of the activity signal may boost the velocity amplitude of these signals to values comparable to the planet. It may be premature to attribute the 3.24 day RV variations to an Earth-mass planet. A better understanding of the noise characteristics in the RV data as well as more measurements with better sampling will be needed to confirm this exoplanet.
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the Solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFT). Here, we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 solar-mass, main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا