Solving CFTs with Weakly Broken Higher Spin Symmetry


Abstract in English

The method of large spin perturbation theory allows to analyse conformal field theories (CFT) by turning the crossing equations into an algebraic problem. We apply this method to a generic CFT with weakly broken higher spin (HS) symmetry, to the first non-trivial order in the breaking parameter. We show that the spectrum of broken currents, for any value of the spin, follows from crossing symmetry. After discussing a generic model of a single scalar field, we focus on vector models with $O(N)$ global symmetry. We rediscover the spectrum of several models, including the $O(N)$ Wilson-Fisher model around four dimensions, the large $O(N)$ model in $2<d<4$ and cubic models around six dimensions, not necessarily unitary. We also discuss models where the fundamental field is not part of the spectrum. Examples of this are weakly coupled gauge theories and our method gives an on-shell gauge invariant way to study them. At first order in the coupling constant we show that again the spectrum follows from crossing symmetry, to all values of the spin. Our method provides an alternative to usual perturbation theory without any reference to a Lagrangian.

Download