No Arabic abstract
We report on the design, fabrication and optical characterization of bichromatic photonic crystal cavities in thin silicon membranes, with resonances around 1550 nm wavelength. The cavity designs are based on a recently proposed photonic crystal implementation of the Aubry-Andre-Harper bichromatic potential, which relies on the superposition of two one-dimensional lattices with non-integer ratio between the periodicity constants. In photonic crystal nanocavities, this confinement mechanism is such that optimized figures of merit can be straightforwardly achieved, in particular an ultra-high-Q factor and diffraction-limited mode volume. Several silicon membrane photonic crystal nanocavities with Q-factors in the 1 million range have been realized, as evidenced by resonant scattering. The generality of these designs and their easy implementation and scalability make these results particularly interesting for realizing highly performing photonic nanocavities on different materials platforms and operational wavelengths.
A generalization of the Aubry-Andre-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameters constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial bandstructures and topologically non-trivial bandstructures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization.
We present a quantitative analysis of two-particle interaction effects in generalized, one-dimensional Aubry-Andre-Harper models with the Fermi energy placed in one of the band gaps. We investigate systems with periodic as well as open boundary conditions; for the latter focusing on the number of edge states and the boundary charge. Both these observables are important for the classification of noninteracting topological systems. In our first class of models the unit cell structure stems from periodically modulated single-particle parameters. In the second it results from the spatial modulation of the two-particle interaction. For both types of models, we find that the single-particle band gaps are renormalized by the interaction in accordance with expectations employing general field theoretical arguments. While interaction induced effective edge states can be found in the local single-particle spectral function close to a boundary, the characteristics of the boundary charge are not modified by the interaction. This indicates that our results for the Rice-Mele and Su-Schriefer-Heeger model [Phys. Rev. B 102, 085122 (2020)] are generic and can be found in lattice models with more complex unit cells as well.
We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population and temperature variations. We experimentally demonstrate effective tuning of the radio frequency (RF) tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters.
Here we study the phase diagram of the Aubry-Andre-Harper model in the presence of strong interactions as the strength of the quasiperiodic potential is varied. Previous work has established the existence of many-body localized phase at large potential strength; here, we find a rich phase diagram in the delocalized regime characterized by spin transport and unusual correlations. We calculate the non-equilibrium steady states of a boundary-driven strongly interacting Aubry-Andre-Harper model by employing the time-evolving block decimation algorithm on matrix product density operators. From these steady states, we extract spin transport as a function of system size and quasiperiodic potential strength. This data shows spin transport going from superdiffusive to subdiffusive well before the localization transition; comparing to previous results, we also find that the transport transition is distinct from a transition observed in the speed of operator growth in the model. We also investigate the correlation structure of the steady state and find an unusual oscillation pattern for intermediate values of the potential strength. The unusual spin transport and quantum correlation structure suggest multiple dynamical phases between the much-studied thermal and many-body-localized phases.
Systems of photonic crystal cavities coupled to quantum dots are a promising architecture for quantum networking and quantum simulators. The ability to independently tune the frequencies of laterally separated quantum dots is a crucial component of such a scheme. Here, we demonstrate independent tuning of laterally separated quantum dots in photonic crystal cavities coupled by in-plane waveguides by implanting lines of protons which serve to electrically isolate different sections of a diode structure.