We present a modular framework, the Workload Characterisation Framework (WCF), that is developed to reproducibly obtain, store and compare key characteristics of radio astronomy processing software. As a demonstration, we discuss the experiences using the framework to characterise a LOFAR calibration and imaging pipeline.
EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability EChO has to detect and characterize the atmospheres of transiting exoplanets, and through this revolutionize the knowledge we have of the Milky Way and of our place in the Galaxy. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument and to simulate the detection. Software simulators have assumed a central role in the design of new instrumentation and in assessing the level of systematics affecting the measurements of existing experiments. Thanks to its high modularity, EChOSim can simulate basic aspects of several existing and proposed spectrometers for exoplanet transits, including instruments on the Hubble Space Telescope and Spitzer, or ground-based and balloon borne experiments. A discussion of different uses of EChOSim is given, including examples of simulations performed to assess the EChO mission.
Exoplanetary science is among the fastest evolving fields of todays astronomical research. Ground-based planet-hunting surveys alongside dedicated space missions (Kepler, CoRoT) are delivering an ever-increasing number of exoplanets, now numbering at ~690, with ESAs GAIA mission planned to bring this number into the thousands. The next logical step is the characterisation of these worlds: what is their nature? Why are they as they are? The use of the HST and Spitzer Space Telescope to probe the atmospheres of transiting hot, gaseous exoplanets has demonstrated that it is possible with current technology to address this ambitious goal. The measurements have also shown the difficulty of understanding the physics and chemistry of these environments when having to rely on a limited number of observations performed on a handful of objects. To progress substantially in this field, a dedicated facility for exoplanet characterization with an optimised instrument design (detector performance, photometric stability, etc.), able to observe through time and over a broad spectral range a statistically significant number of planets, will be essential. We analyse the performances of a 1.2/1.4m space telescope for exoplanet transit spectroscopy from the visible to the mid IR, and present the SNR ratio as function of integration time and stellar magnitude/spectral type for the acquisition of spectra of planetary atmospheres in a variety of scenarios: hot, warm, and temperate planets, orbiting stars ranging in spectral type from hot F to cool M dwarfs. We include key examples of known planets (e.g. HD 189733b, Cancri 55 e) and simulations of plausible terrestrial and gaseous planets, with a variety of thermodynamical conditions. We conclude that even most challenging targets, such as super-Earths in the habitable-zone of late-type stars, are within reach of a M-class, space-based spectroscopy mission.
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs radio-hybrid measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.
We present the results of a programme of scanning and mapping observations of astronomical masers and Jupiter designed to characterise the performance of the Mopra Radio Telescope at frequencies between 16-50 GHz using the 12-mm and 7-mm receivers. We use these observations to determine the telescope beam size, beam shape and overall telescope beam efficiency as a function of frequency. We find that the beam size is well fit by $lambda$/$D$ over the frequency range with a correlation coefficient of ~90%. We determine the telescope main beam efficiencies are between ~48-64% for the 12-mm receiver and reasonably flat at ~50% for the 7-mm receiver. Beam maps of strong H$_2$O (22 GHz) and SiO masers (43 GHz) provide a means to examine the radial beam pattern of the telescope. At both frequencies the radial beam pattern reveals the presence of three components, a central `core, which is well fit by a Gaussian and constitutes the telescopes main beam, and inner and outer error beams. At both frequencies the inner and outer error beams extend out to approximately 2 and 3.4 times the full-width half maximum of the main beam respectively. Sources with angular sizes a factor of two or more larger than the telescope main beam will couple to the main and error beams, and therefore the power contributed by the error beams needs to be considered. From measurements of the radial beam power pattern we estimate the amount of power contained in the inner and outer error beams is of order one-fifth at 22 GHz rising slightly to one-third at 43 GHz.
The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronomy science projects.