No Arabic abstract
There is currently a big effort put into the operation and construction of world class neutron scattering facilities (SNS and SNS-TS2 in the US, J-PARC in Japan, ESS in Europe, CSS in China, PIK in Russia). On the other hand, there exists a network of smaller neutron scattering facilities which play a key role in creating a large neutron scattering community who is able to efficiently use the existing facilities. With the foreseen closure of the ageing nuclear research reactors, especially in Europe there is a risk of seeing a shrinking of the community who would then be able to use efficiently the world class facilities. There is thus a reflection being conducted in several countries for the replacement of smaller research reactors with low energy accelerator based sources. We consider here a reference design for a compact neutron source based on existing accelerator components. We estimate the performances of various types of neutron scattering instruments built around such a source. The results suggest that nowadays state of the art neutron scattering experiments could be successfully performed on such a compact source and that it is thus a viable replacement solution for neutron research reactors.
The concept of a small-scale, pulsed-proton accelerator based compact ultracold neutron (UCN) source is presented. The essential idea of the compact UCN source is to enclose a volume of superfluid $^{4}mathrm{He}$ converter with a supercold moderator in the vicinity of a low-radiation neutron production target from (p, n) reactions. The supercold moderator should possess an ability to produce cold neutron flux with a peak brightness near the single-phonon excitation band of the superfluid $^{4}mathrm{He}$ converter, thereby augmenting the UCN production in the compact UCN source even with very low intensity of neutron brightness. The performance of the compact UCN source is studied in terms of the UCN production and thermal load in the UCN converter. With the proposed concept of the compact UCN source, a UCN production rate of $P_{mathrm{UCN}}=80mathrm{UCN}/mathrm{cc}/mathrm{sec}$ in the UCN converter could be obtained while maintaining thermal load of on the superfluid $^{4}mathrm{He}$ and its container at a level of $22mathrm{mW}$. This study shows that the compact UCN source can produce a high enough density of UCN at a small-scale, low-energy, pulsed-proton beam facility with reduced efforts on the cooling and radiation protection.
A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.
We report on our efforts to optimize the geometry of neutron moderators and converters for the TRIUMF UltraCold Advanced Neutron (TUCAN) source using MCNP simulations. It will use an existing spallation neutron source driven by a 19.3 kW proton beam delivered by TRIUMFs 520 MeV cyclotron. Spallation neutrons will be moderated in heavy water at room temperature and in liquid deuterium at 20 K, and then superthermally converted to ultracold neutrons in superfluid, isotopically purified $^4$He. The helium will be cooled by a $^3$He fridge through a $^3$He-$^4$He heat exchanger. The optimization took into account a range of engineering and safety requirements and guided the detailed design of the source. The predicted ultracold-neutron density delivered to a typical experiment is maximized for a production volume of 27 L, achieving a production rate of $1.4 cdot 10^7$ s$^{-1}$ to $1.6 cdot 10^7$ s$^{-1}$ with a heat load of 8.1 W. At that heat load, the fridge can cool the superfluid helium to 1.1 K, resulting in a storage lifetime for ultracold neutrons in the source of about 30 s. The most critical performance parameters are the choice of cold moderator and the volume, thickness, and material of the vessel containing the superfluid helium. The source is scheduled to be installed in 2021 and will enable the TUCAN collaboration to measure the electric dipole moment of the neutron with a sensitivity of $10^{-27}$ e cm.
The ultracold neutron (UCN) source at the Paul Scherrer Institute serves mainly experiments in fundamental physics. High UCN intensities are the key for progress and success in such experiments. A detailed understanding of all source parameters is required for future improvements. Here we present the UCN source components, elements of the neutron optics, the characterization of important related parameters like emptying times, storage times or transmission probabilities of UCN which are ultimately defining the UCN intensity delivered at the beamports. We also introduce a detailed simulation model of the PSI UCN source, used to analyze the measurements and to extract surface parameters.
The newest neutron scattering applications are highly intensity-limited techniques that demand reducing the neutron losses between source and detectors. In addition, the nuclear industry demands more accurate data and procedures for the design and optimization of advanced fission reactors, especially for the treatment of fuel and moderator materials. To meet these demands, it is necessary to improve the existing calculation tools, through the generation of better models that describe the interaction of neutrons with the systems of interest. The Neutron Physics Department at Centro Atomico Bariloche (CNEA, Argentina) has been developing over the time new models for the interaction of slow neutrons with materials, to produce scattering kernels and cross section data in the thermal and cold neutron energy region. Besides the studies carried out on neutron moderators, we have recently begun looking at materials that could serve as efficient neutron reflectors over those energy ranges. In this work we present the results of transmission and scattering experiments on diamond nanopowder and magnesium hydride, carried out simultaneously at the VESUVIO spectrometer (ISIS, UK), and compare them with newly generated cross-section libraries.