We analyze theoretically the interplay between the torsional and the rotational motion of an aligned biphenyl-like molecule. To do so, we consider a transition between two electronic states with different internal torsional potentials, induced by means of a resonant laser pulse. The change in the internal torsional potential provokes the motion of the torsional wavepacket in the excited electronic state, modifying the structure of the molecule, and hence, its inertia tensor. We find that this process has a strong impact on the rotational wave function, displaying different behavior depending on the electronic states involved and their associated torsional potentials. We describe the dynamics of the system by considering the degree of alignment and the expectations values of the angular momentum operators for the overall rotation of the molecule.