Do you want to publish a course? Click here

Unusually stable helical coil allotrope of phosphorus

75   0   0.0 ( 0 )
 Added by Dan Liu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio Density Functional Theory calculations indicate that the uncoiled, isolated straight 1D chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of about 12 meV/atom to the coil allotrope, similar in value to the approximately 16 meV/atom inter-layer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.

rate research

Read More

Besides graphite and diamond, the solid allotropes of carbon in sp2 and sp3 hybridization, the possible existence of a third allotrope based on the sp-carbon linear chain, the Carbyne, has stimulated researchers for a long time. The advent of fullerenes, nanotubes and graphene has opened new opportunities and nurtured the interest in novel carbon allotropes including linear structures. The efforts made in this direction produced a number of interesting sp-hybridized carbon molecules and nanostructures in the form of carbon-atom wires. We here discuss some of the new perspectives opened by the recent advancements in the research on sp-carbon systems.
Studies of polynitrogen phases are of great interest for fundamental science and for the design of novel high energy density materials. Laser heating of pure nitrogen at 140 GPa in a diamond anvil cell led to the synthesis of a polymeric nitrogen allotrope with the black phosphorus structure, bp-N. The structure was identified in situ using synchrotron single-crystal X-ray diffraction and further studied by Raman spectroscopy and density functional theory calculations. The discovery of bp-N brings nitrogen in line with heavier pnictogen elements, resolves incongruities regarding polymeric nitrogen phases and provides insights into polynitrogen arrangements at extreme densities.
Three dimensional topological Dirac semi-metals represent a novel state of quantum matter with exotic electronic properties, in which a pair of Dirac points with the linear dispersion along all momentum directions exist in the bulk. Herein, by using the first principles calculations, we discover a new metastable allotrope of Ge and Sn in the staggered layered dumbbell structure, named as germancite and stancite, to be Dirac semi-metals with a pair of Dirac points on its rotation axis. On the surface parallel to the rotation axis, a pair of topologically non-trivial Fermi arcs are observed and a Lifshitz transition is found by tuning the Fermi level. Furthermore, the quantum thin film of germancite is found to be an intrinsic quantum spin Hall insulator. These discoveries suggest novel physical properties and future applications of the new metastable allotrope of Ge and Sn.
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2/Vs in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
Layered and two-dimensional (2D) materials such as graphene, boron nitride, transition metal dichalcogenides(TMDCs), and black phosphorus (BP) have intriguing fundamental physical properties and bear promise of numerous important applications in electronics and optics. Of them, BP is a novel 2D material that has been theoretically predicted to acquire plasmonic behavior for frequencies below ~0.4 eV when highly doped. The electronic properties of BP are unique due to an anisotropic structure, which could strongly influence collective electronic excitations. Advantages of BP as a material for nanoelectronics and nanooptics are due to the fact that, in contrast to metals, the free carrier density in it can be dynamically controlled by electrostatic gating, which has been demonstrated by its use in field-effect transistors. Despite all the interest that BP attracts, near-field and plasmonic properties of BP have not yet been investigated experimentally. Here we report the first observation of nanoscopic near-field properties of BP. We have discovered near field patterns of outside bright fringes and high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared (mid-IR) frequencies. This behavior is highly frequency-dispersive, disappearing above frequency, {omega} =1070 cm-1, which allowed us to estimate the plasma frequency and carrier density. We have also observed similar behavior in other 2D semiconductors such as TMDCs but not in 2D insulators such as boron nitride. This new phenomenon is attributed to surface charging of the semiconductor nanofilms. This discovery opens up a new field of research and potential applications in nanoplasmonics and optoelectronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا