No Arabic abstract
Over the past thirty years, it has been consistently observed that surface engineering of colloidal nanocrystals (NC) is key to their performance parameters. In the case of lead chalcogenide NCs, for example, replacing thiols with halide anion surface termination has been shown to increase power conversion efficiency in NC-based solar cells. To gain insight into the origins of these improvements, we perform ab initio molecular dynamics (AIMD) on experimentally-relevant sized lead sulfide (PbS) NCs constructed with thiol or Cl, Br, and I anion surfaces. The surface of both the thiol- and halide-terminated NCs exhibit low and high-energy phonon modes with large thermal displacements not present in bulk PbS; however, halide anion surface termination reduces the overlap of the electronic wavefunctions with these vibration modes. These findings suggest that electron-phonon interactions will be reduced in the halide terminated NCs, a conclusion that is supported by analyzing the time-dependent evolution of the electronic energies and wavefunctions extracted from the AIMD. This work explains why electron-phonon interactions are crucial to charge carrier dynamics in NCs and how surface engineering can be applied to systematically control their electronic and phononic properties. Furthermore, we propose that the computationally efficient approach of gauging electron-phonon interaction implemented here can be used to guide the design of application-specific surface terminations for arbitrary nanomaterials.
The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.
The surface structure of phosphorene crystals materials is determined using surface sensitive dynamical micro-spot low energy electron diffraction ({mu}LEED) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (textit{i}) crystalline cleaved black phosphorus (BP) at 300 K and (textit{ii}) exfoliated few-layer phosphorene (FLP) of about 10 nm thicknes, which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 {AA} and 0.30 {AA}, respectively, is measured, which is one order of magnitude larger than previously reported. Using first principle calculations, the presence of surface vacancies is attributed not only to the surface buckling in BP and FLP, but also the previously reported intrinsic hole doping of phosphorene materials.
We report ab initio calculations of the electronic band structure, the corresponding optical spectra, and the phonon dispersion relations of trigonal alpha-HgS (cinnabar). The calculated dielectric functions are compared with unpublished optical measurements by Zallen and coworkers. The phonon dispersion relations are used to calculate the temperature and isotopic mass dependence of the specific heat which has been compared with experimental data obtained on samples with the natural isotope abundances of the elements Hg and S (natural minerals and vapor phase grown samples) and on samples prepared from isotope enriched elements by vapor phase transport. Comparison of the calculated vibrational frequencies with Raman and ir data is also presented. Contrary to the case of cubic beta-HgS (metacinnabar), the spin-orbit splitting of the top valence bands at the Gamma-point of the Brillouin zone (Delta_0) is positive, because of a smaller admixture of 5d core electrons of Hg. Calculations of the lattice parameters, and the pressure dependence of Delta_0 and the corresponding direct gap E_0~2eV are also presented. The lowest absorption edge is confirmed to be indirect.
We report the production and characterization of a form of amorphous carbon films with sp/sp2 hybridization (atomic fraction of sp hybridized species > 20%) where the predominant sp bonding appears to be (=C=C=)n cumulene. Vibrational and electronic properties have been studied by in situ Raman spectroscopy and electrical conductivity measurements. Cumulenic chains are substantially stable for temperatures lower than 250 K and they influence the electrical transport properties of the sp/sp2 carbon through a self-doping mechanism by pinning the Fermi level closer to one of the mobility gap edges. Upon heating above 250 K the cumulenic species decay to form graphitic nanodomains embedded in the sp2 amorphous matrix thus reducing the activation energy of the material. This is the first example of a pure carbon system where the sp hybridization influences bulk properties.
Despite belonging to a well-studied family of transition metal trihalides, VI_3 has received significant attention only recently. As a hard ferromagnetic van der Waals compound with a large coercivity, it attracted much attention because of its potential use in atomically thin spintronic and optoelectronic devices. However, practical exploration of VI_3 is challenging due to its instability under ambient conditions. Here, we present a comprehensive set of optical, x-ray diffraction, magnetization, and ellipsometric measurements of VI3 and demonstrate that, similarly to the related van der Waals ferromagnet CrI_3, the degradation process is accelerated by the presence of moisture. The VI_3 surface was covered by selected media commonly used in physical measurements to test its stability and lower the degradation rate three times or higher, providing practical information for experimentalists interested. The decomposition study at ambient conditions shows that the VI_3 single crystal can be used for most of the bulk, magnetization, and optical measurements without any noticeable change of physical properties, as the significant degradation appears first after ~ 2 hours of exposition as illustrated, e.g., by the evolution of the ferromagnetic T_1 and T_2 transitions. The ellipsometric measurement demonstrates that even the surface remains optically stable for at least 5 minutes.