Lift and drag in three-dimensional steady viscous and compressible flow


Abstract in English

In a recent paper, Liu, Zhu and Wu (2015, {it J. Fluid Mech.} {bf 784}: 304) present a force theory for a body in a two-dimensional, viscous, compressible and steady flow. In this companion paper we do the same for three-dimensional flow. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flow originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the textit{unified force theorem}, which states that the forces are always determined by the vector circulation $pGamma_phi$ of longitudinal velocity and the scalar inflow $Q_psi$ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the textit{testable unified force formula}. After that, a general principle to increase the lift-drag ratio is proposed.

Download