Do you want to publish a course? Click here

Gradient optimization of finite projected entangled pair states

214   0   0.0 ( 0 )
 Added by Lixin He
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The projected entangled pair states (PEPS) methods have been proved to be powerful tools to solve the strongly correlated quantum many-body problems in two-dimension. However, due to the high computational scaling with the virtual bond dimension $D$, in a practical application PEPS are often limited to rather small bond dimensions, which may not be large enough for some highly entangled systems, for instance, the frustrated systems. The optimization of the ground state using time evolution method with simple update scheme may go to a larger bond dimension. However, the accuracy of the rough approximation to the environment of the local tensors is questionable. Here, we demonstrate that combining the time evolution method with simple update, Monte Carlo sampling techniques and gradient optimization will offer an efficient method to calculate the PEPS ground state. By taking the advantages of massive parallel computing, we can study the quantum systems with larger bond dimensions up to $D$=10 without resorting to any symmetry. Benchmark tests of the method on the $J_1$-$J_2$ model give impressive accuracy compared with exact results.



rate research

Read More

144 - G. Scarpa , A. Molnar , Y. Ge 2018
Matrix Product States (MPS) and Projected Entangled Pair States (PEPS) are powerful analytical and numerical tools to assess quantum many-body systems in one and higher dimensions, respectively. While MPS are comprehensively understood, in PEPS fundamental questions, relevant analytically as well as numerically, remain open, such as how to encode symmetries in full generality, or how to stabilize numerical methods using canonical forms. Here, we show that these key problems, as well as a number of related questions, are algorithmically undecidable, that is, they cannot be fully resolved in a systematic way. Our work thereby exposes fundamental limitations to a full and unbiased understanding of quantum many-body systems using PEPS.
We show that two different tensors defining the same translational invariant injective Projected Entangled Pair State (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.
The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to the fermionic PEPS (fPEPS). To simplify the implementation, we introduce a fermi arrow notation to specify the order of the fermion operators in the virtual entangled EPR pairs. By defining some local operation rules associated with the fermi arrows, one can implement fPEPS algorithms very similar to that of standard PEPS. We benchmark the method for the interacting spinless fermion models, and the t-J models. The numerical calculations show that the gradient optimization greatly improves the results of simple update method. Furthermore, much larger virtual bond dimensions ($D$) and truncation dimensions ($D_c$) than those of boson and spin systems are necessary to converge the results. The method therefore offer a powerful tool to simulate fermion systems because it has much lower scaling than the direct contraction methods.
We introduce plaquette projected entangled-pair states, a class of states in a lattice that can be generated by applying sequential unitaries acting on plaquettes of overlapping regions. They satisfy area-law entanglement, possess long-range correlations, and naturally generalize other relevant classes of tensor network states. We identify a subclass that can be more efficiently prepared in a radial fashion and that contains the family of isometric tensor network states. We also show how such subclass can be efficiently prepared using an array of photon sources.
253 - Philippe Corboz 2016
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local Hamiltonian. The method is based on a systematic summation of Hamiltonian contributions using the corner transfer-matrix method. Benchmark results for challenging problems are presented, including the 2D Heisenberg model, the Shastry-Sutherland model, and the t-J model, which show that the variational scheme yields considerably more accurate results than the previously best imaginary time evolution algorithm, with a similar computational cost and with a faster convergence towards the ground state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا