No Arabic abstract
This paper proposes the architecture of partial sum generator for constituent codes based polar code decoder. Constituent codes based polar code decoder has the advantage of low latency. However, no purposefully designed partial sum generator design exists that can yield desired timing for the decoder. We first derive the mathematical presentation with the partial sums set $bm{beta^c}$ which is corresponding to each constituent codes. From this, we concoct a shift-register based partial sum generator. Next, the overall architecture and design details are described, and the overhead compared with conventional partial sum generator is evaluated. Finally, the implementation results with both ASIC and FPGA technology and relevant discussions are presented.
Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence repetition node corresponding to a particular class of bit sequences. Most existing special node types are special cases of the proposed sequence repetition node. Then, a fast parallel decoder is proposed for this class of node. To further speed up the decoding process of general nodes outside this class, a threshold-based hard-decision-aided scheme is introduced. The threshold value that guarantees a given error-correction performance in the proposed scheme is derived theoretically. Analysis and hardware implementation results on a polar code of length $1024$ with code rates $1/4$, $1/2$, and $3/4$ show that our proposed algorithm reduces the required clock cycles by up to $8%$, and leads to a $10%$ improvement in the maximum operating frequency compared to state-of-the-art decoders without tangibly altering the error-correction performance. In addition, using the proposed threshold-based hard-decision-aided scheme, the decoding latency can be further reduced by $57%$ at $mathrm{E_b}/mathrm{N_0} = 5.0$~dB.
Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-correction performance at moderate code length. In order to improve the error-correction performance of SC, two approaches are available: (i) SC-List decoding which keeps a list of candidates by running a number of SC decoders in parallel, thus increasing the implementation complexity, and (ii) SC-Flip decoding that relies on a single SC module, and keeps the computational complexity close to SC. In this work, we propose the partitioned SC-Flip (PSCF) decoding algorithm, which outperforms SC-Flip in terms of error-correction performance and average computational complexity, leading to higher throughput and reduced energy consumption per codeword. We also introduce a partitioning scheme that best suits our PSCF decoder. Simulation results show that at equivalent frame error rate, PSCF has up to $5 times$ less computational complexity than the SC-Flip decoder. At equivalent average number of iterations, the error-correction performance of PSCF outperforms SC-Flip by up to $0.15$ dB at frame error rate of $10^{-3}$.
This work analyzes the latency of the simplified successive cancellation (SSC) decoding scheme for polar codes proposed by Alamdar-Yazdi and Kschischang. It is shown that, unlike conventional successive cancellation decoding, where latency is linear in the block length, the latency of SSC decoding is sublinear. More specifically, the latency of SSC decoding is $O(N^{1-1/mu})$, where $N$ is the block length and $mu$ is the scaling exponent of the channel, which captures the speed of convergence of the rate to capacity. Numerical results demonstrate the tightness of the bound and show that most of the latency reduction arises from the parallel decoding of subcodes of rate $0$ or $1$.
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additional rounds of SCL decoding when the first SCL decoding attempt fails, using a novel bit-flipping metric. The proposed bit-flipping metric exploits the inherent relations between the information bits in polar codes that are represented by a correlation matrix. The correlation matrix is then optimized using emerging deep-learning techniques. Performance results on a polar code of length 128 with 64 information bits concatenated with a 24-bit cyclic redundancy check show that the proposed bit-flipping metric in the proposed DL-SCL decoder requires up to 66% fewer multiplications and up to 36% fewer additions, without any need to perform transcendental functions, and by providing almost the same error-correction performance in comparison with the state of the art.
Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with a complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in significant error-correction performance loss. We then introduce a training parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding, with almost no error-correction performance degradation.