Do you want to publish a course? Click here

Microscopic Foundations of Ohm and Joules Laws - The Relevance of Thermodynamics

102   0   0.0 ( 0 )
 Added by Jean-Bernard Bru
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give a brief historical account on microscopic explanations of electrical conduction. One aim of this short review is to show that Thermodynamics is fundamental to the theoretical understanding of the phenomenon. We discuss how the 2nd law, implemented in the scope of Quantum Statistical Mechanics, can be naturally used to give mathematical sense to conductivity of very general quantum many-body models. This is reminiscent of original ideas of J.P. Joule. We start with Ohm and Joules discoveries and proceed by describing the Drude model of conductivity. The impact of Quantum Mechanics and the Anderson model are also discussed. The exposition is closed with the presentation of our approach to electrical conductivity based on the 2nd law of Thermodynamics as passivity of systems at thermal equilibrium. It led to new rigorous results on linear conductivity of interacting fermions. One example is the existence of so-called AC-conductivity measures for such a physical system. These measures are, moreover, Fourier transforms of time correlations of current fluctuations in the system. I.e., the conductivity satisfies, for a large class of quantum mechanical microscopic models, Green-Kubo relations.



rate research

Read More

We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.
There exist a large literature on the application of $q$-statistics to the out-of-equilibrium non-ergodic systems in which some degree of strong correlations exists. Here we study the distribution of first return times to zero, $P_R(0,t)$, of a random walk on the set of integers ${0,1,2,...,L}$ with a position dependent transition probability given by $|n/L|^a$. We find that for all values of $ain[0,2]$ $P_R(0,t)$ can be fitted by $q$-exponentials, but only for $a=1$ is $P_R(0,t)$ given exactly by a $q$-exponential in the limit $Lrightarrowinfty$. This is a remarkable result since the exact analytical solution of the corresponding continuum model represents $P_R(0,t)$ as a sum of Bessel functions with a smooth dependence on $a$ from which we are unable to identify $a=1$ as of special significance. However, from the high precision numerical iteration of the discrete Master Equation, we do verify that only for $a=1$ is $P_R(0,t)$ exactly a $q$-exponential and that a tiny departure from this parameter value makes the distribution deviate from $q$-exponential. Further research is certainly required to identify the reason for this result and also the applicability of $q$-statistics and its domain.
117 - Zaibao Yang , Wen-An Yong , Yi Zhu 2015
This article is concerned with the dynamics of a mixture of gases. Under the assumption that all the gases are isothermal and inviscid, we show that the governing equations have an elegant conservation-dissipation structure. With the help of this structure, a multicomponent diffusion law is derived mathematically rigorously. This clarifies a long-standing non-uniqueness issue in the field for the first time. The multicomponent diffusion law derived here takes the spatial gradient of an entropic variable as the thermodynamic forces and satisfies a nonlinear version of the Onsager reciprocal relations.
We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.
We consider the nonlinear equations obtained from soliton equations by adding self-consistent sources. We demonstrate by using as an example the Kadomtsev-Petviashvili equation that such equations on periodic functions are not isospectral. They deform the spectral curve but preserve the multipliers of the Floquet functions. The latter property implies that the conservation laws, for soliton equations, which may be described in terms of the Floquet multipliers give rise to conservation laws for the corresponding equations with self-consistent sources. Such a property was first observed by us for some geometrical flow which appears in the conformal geometry of tori in three- and four-dimensional Euclidean spaces (math/0611215).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا