Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD


Abstract in English

We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at $O(alpha)$ are universal, i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading non-universal, structure-dependent terms are of $O(1/L^2)$ (compared to the $O(1/L^3)$ leading non-universal corrections in the spectrum). We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final state lepton). The result can be included in the strategy proposed in Ref.,cite{Carrasco:2015xwa} for using lattice simulations to compute the decay widths at $O(alpha)$, with the remaining finite-volume effects starting at order $O(1/L^2)$. The methods developed in this paper can be generalised to other decay processes, most notably to semileptonic decays, and hence open the possibility of a new era in precision flavour physics.

Download