No Arabic abstract
We followed the collective atomic-scale motion of Na atoms on a vicinal Cu(115) surface within a time scale of pico to nano-seconds using helium spin echo spectroscopy. The well defined stepped structure of Cu(115) allows us to study the effect that atomic steps have on the adsorption properties, the rate for motion parallel and perpendicular to the step edge and the interaction between the Na atoms. With the support of a molecular dynamics simulation we show that the Na atoms perform strongly anisotropic one dimensional hopping motion parallel to the step edges. Furthermore, we observe that the spatial and temporal correlations between the Na atoms which lead to collective motion are also anisotropic, suggesting the steps efficiently screen the lateral interaction between Na atoms residing on different terraces.
In studies of dynamical systems, helium atoms scatter coherently from an ensemble of adsorbates as they diffuse on the surface. The results give information on the co-operative behaviour of interacting adsorbates and thus include the effects of both adsorbate-substrate and adsorbate-adsorbate interactions. Here, we discuss a method to disentangle the effects of interactions between adsorbates from those with the substrate. The result gives an approximation to observations that would be obtained if the scattering was incoherent. Information from the experiment can therefore be used to distinguish more clearly between long-range inter-adsorbate forces and the short range effects arising from the local lattice potential and associated thermal excitations. The method is discussed in the context of a system with strong inter-adsorbate interactions, sodium atoms diffusing on a copper (111) surface.
Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.
We formulate the theory of the perturbation caused by an adsorbate upon the substrate lattice in terms of a local modification of the interatomic potential energy around the adsorption site, which leads to the relaxation of substrate atoms. We apply the approach to CO chemisorption on close-packed metal surfaces, and show that the adsorbate-adsorbate interaction and a variety of other properties can be well described by a simple model.
Images of the morphology of GaN (0001) surfaces often show half-unit-cell-height steps separating a sequence of terraces having alternating large and small widths. This can be explained by the $alpha beta alpha beta$ stacking sequence of the wurtzite crystal structure, which results in steps with alternating $A$ and $B$ edge structures for the lowest energy step azimuths, i.e. steps normal to $[0 1 bar{1} 0]$ type directions. Predicted differences in the adatom attachment kinetics at $A$ and $B$ steps would lead to alternating $alpha$ and $beta$ terrace widths. However, because of the difficulty of experimentally identifying which step is $A$ or $B$, it has not been possible to determine the absolute difference in their behavior, e.g. which step has higher adatom attachment rate constants. Here we show that surface X-ray scattering can measure the fraction of $alpha$ and $beta$ terraces, and thus unambiguously differentiate the growth dynamics of $A$ and $B$ steps. We first present calculations of the intensity profiles of GaN crystal truncation rods (CTRs) that demonstrate a marked dependence on the $alpha$ terrace fraction $f_alpha$. We then present surface X-ray scattering measurements performed textit{in situ} during homoepitaxial growth on (0001) GaN by vapor phase epitaxy. By analyzing the shapes of the $(1 0 bar{1} L)$ and $(0 1 bar{1} L)$ CTRs, we determine that the steady-state $f_alpha$ increases at higher growth rate, indicating that attachment rate constants are higher at $A$ steps than at $B$ steps. We also observe the dynamics of $f_alpha$ after growth conditions are changed. The results are analyzed using a Burton-Cabrera-Frank model for a surface with alternating step types, to extract values for the kinetic parameters of $A$ and $B$ steps. These are compared with predictions for GaN (0001).
Using molecular dynamics simulations we study the static and dynamic properties of spherical nanoparticles (NPs) embedded in a disordered and polydisperse polymer network. Purely repulsive (RNP) as well as weakly attractive (ANP) polymer-NP interactions are considered. It is found that for both types of particles the NP dynamics at intermediate and at long times is controlled by the confinement parameter $C=sigma_N/lambda$, where $sigma_N$ is the NP diameter and $lambda$ is the dynamic localization length of the crosslinks. Three dynamical regimes are identified: i) For weak confinement ($C lesssim 1$) the NPs can freely diffuse through the mesh; ii) For strong confinement ($C gtrsim 1$) NPs proceed by means of activated hopping; iii) For extreme confinement ($C gtrsim 3$) the mean squared displacement shows on intermediate time scales a quasi-plateau since the NPs are trapped by the mesh for very long times. Escaping from this local cage is a process that depends strongly on the local environment, thus giving rise to an extremely heterogeneous relaxation dynamics. The simulation data are compared with the two main theories for the diffusion process of NPs in gels. Both theories give a very good description of the $C-$dependence of the NP diffusion constant, but fail to reproduce the heterogeneous dynamics at intermediate time scales.