Do you want to publish a course? Click here

Effective potential for relativistic scattering

82   0   0.0 ( 0 )
 Added by Janos Balog
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum potential of the equivalent Ruijsenaars-Schneider model.



rate research

Read More

The experimental data from quasielastic electron scattering from $^{12}$C are reanalyzed in terms of a new scaling variable suggested by the interacting relativistic Fermi gas with scalar and vector interactions, which is known to generate a relativistic effective mass for the interacting nucleons. By choosing a mean value of this relativistic effective mass $m_N^* =0.8 m_N$, we observe that most of the data fall inside a region around the inverse parabola-shaped universal scaling function of the relativistic Fermi gas. This suggests a method to select the subset of data that highlight the quasielastic region, about two thirds of the total 2,500 data. Regardless of the momentum and energy transfer, this method automatically excludes the data that are not dominated by the quasielastic process. The resulting band of data reflects deviations from the perfect universality, and can be used to characterize experimentally the quasielastic peak, despite the manifest scaling violation. Moreover we show that the spread of the data around the scaling function can be interpreted as genuine fluctuations of the effective mass $M^* equiv m^*_N/m_N sim 0.8 pm 0.1$. Applying the same procedure we transport the scaling quasielastic band into a theoretical prediction band for neutrino scattering cross section that is compatible with the recent measurements and slightly more accurate.
57 - C. Alexandrou 1997
Nonperturbative polaron variational methods are applied, within the so-called particle or worldline representation of relativistic field theory, to study scattering in the context of the scalar Wick - Cutkosky model. Important features of the variational calculation are that it is a controlled approximation scheme valid for arbitrary coupling strengths, the Green functions have all the cuts and poles expected for the exact result at any order in perturbation theory and that the variational parameters are simultaneously sensitive to the infrared as well as the ultraviolet behaviour of the theory. We generalize the previously used quadratic trial action by allowing more freedom for off-shell propagation without a change in the on-shell variational equations and evaluate the scattering amplitude at first order in the variational scheme. Particular attention is paid to the $s$-channel scattering near threshold because here non-perturbative effects can be large. We check the unitarity of a our numerical calculation and find it greatly improved compared to perturbation theory and to the zeroth order variational results.
We use a recent scaling analysis of the quasielastic electron scattering data from $^{12}$C to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selection of the $(e,e)$ cross section data, and an effective nucleon mass inspired by the relativistic mean-field model of nuclear matter. The corresponding super-scaling analysis with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the impulse approximation, in particular meson-exchange currents and short range correlations producing tails in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as other more sophisticated nuclear models.
A distorted-wave version of the renormalisation group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wave function satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalisation of the three-body interactions, with the renormalisation-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces.
We present a global analysis of the inclusive quasielastic electron scattering data with a superscaling approach with relativistic effective mass. The SuSAM* model exploits the approximation of factorization of the scaling function $f^*(psi^*)$ out of the cross section under quasifree conditions. Our approach is based on the relativistic mean field theory of nuclear matter where a relativistic effective mass for the nucleon encodes the dynamics of nucleons moving in presence of scalar and vector potentials. Both the scaling variable $psi^*$ and the single nucleon cross sections include the effective mass as a parameter to be fitted to the data alongside the Fermi momentum $k_F$. Several methods to extract the scaling function and its uncertainty from the data are proposed and compared. The model predictions for the quasielastic cross section and the theoretical error bands are presented and discussed for nuclei along the periodic table from $A=2$ to $A=238$: $^2$H, $^3$H, $^3$He, $^4$He, $^{12}$C, $^{6}$Li, $^{9}$Be, $^{24}$Mg, $^{59}$Ni, $^{89}$Y, $^{119}$Sn, $^{181}$Ta, $^{186}$W, $^{197}$Au, $^{16}$O, $^{27}$Al, $^{40}$Ca, $^{48}$Ca, $^{56}$Fe, $^{208}$Pb, and $^{238}$U. We find that more than 9000 of the total $sim 20000$ data fall within the quasielastic theoretical bands. Predictions for $^{48}$Ti and $^{40}$Ar are also provided for the kinematics of interest to neutrino experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا