No Arabic abstract
Phase-locking an array of quantum cascade lasers is an effective way to achieve higher output power and beam shaping. In this article, based on Talbot effect, we show a new-type phase-locked array of mid-infrared quantum cascade lasers with an integrated spatial- filtering Talbot cavity. All the arrays show stable in-phase operation from the threshold current to full power current. The beam divergence of the array device is smaller than that of a single-ridge laser. We use the multi-slit Fraunhofer diffraction mode to interpret the far-field radiation profile and give a solution to get better beam quality. The maximum power is just about 5 times that of a single-ridge laser for eleven-laser array device and 3 times for seven-laser array device. Considering the great modal selection ability, simple fabricating process and the potential for achieving better beam quality and smaller cavity loss, this new-type phase-locked array may be a hopeful and elegant solution to get high power or beam shaping.
We consider design optimization of passively mode-locked two-section semiconductor lasers that incorporate intracavity grating spectral filters. Our goal is to develop a method for finding the optimal wavelength location for the filter in order to maximize the region of stable mode-locking as a function of drive current and reverse bias in the absorber section. In order to account for material dispersion in the two sections of the laser, we use analytic approximations for the gain and absorption as a function of carrier density and frequency. Fits to measured gain and absorption curves then provide inputs for numerical simulations based on a large signal accurate delay-differential model of the mode-locked laser. We show how a unique set of model parameters for each value of the drive current and reverse bias voltage can be selected based on the variation of the net gain along branches of steady-state solutions of the model. We demonstrate the validity of this approach by demonstrating qualitative agreement between numerical simulations and the measured current-voltage phase-space of a two-section Fabry-Perot laser. We then show how to adapt this method to determine an optimum location for the spectral filter in a notional device with the same material composition, based on the targeted locking range, and accounting for the modal selectivity of the filter.
We present an experimental study of the turn-on delay in pulsed mid-infrared quantum cascade lasers. We report the unexpectedly long delay time depending on the pumping current, which does not agree with conventional theoretical predictions for step-like excitation. Similar behavior has been observed in InP- and InAs-based QCLs emitting near 8${mu}$m. Numerical simulations performed using a model based on rate equations for excitation by current pulses with non-zero rise time provide fair agreement with our observations.
The Kuramoto model is a mathematical model for describing the collective synchronization phenomena of coupled oscillators. We theoretically demonstrate that an array of coupled photonic crystal lasers emulates the Kuramoto model with non-delayed nearest-neighbor coupling (the local Kuramoto model). Our novel strategy employs indirect coupling between lasers via additional cold cavities. By installing cold cavities between laser cavities, we avoid the strong coupling of lasers and realize ideal mutual injection-locking with effective non-delayed dissipative coupling. First, after discussing the limit cycle interpretation of laser oscillation, we demonstrate the synchronization of two indirectly coupled lasers by numerically simulating coupled-mode equations. Second, by performing a phase reduction analysis, we show that laser dynamics in the proposed device can be mapped to the local Kuramoto model. Finally, we briefly demonstrate that a chain of indirectly coupled photonic crystal lasers actually emulates the one-dimensional local Kuramoto chain. We also argue that our proposed structure, which consists of periodically aligned cold cavities and laser cavities, will best be realized by using state-of-the-art buried multiple quantum well photonic crystals.
High performance of InP-based quantum cascade lasers emitting at $lambda$ ~ 9$mu$m are reported. Thick electroplated gold layer was deposited on top of the laser to improve heat dissipation. With one facet high reflection coated, the devices produce a maximum output power of 175mW at 40% duty cycle at room temperature and continuous-wave operation up to 278K.
We report on the operation of a 50 mW continuous wave quantum cascade laser (QCL) in the 9.2 micrometer range, phase locked to a single mode CO2 laser with a tunable frequency offset. The wide free running emission spectrum of the QCL (3-5 MHz) is strongly narrowed down to the kHz range making it suitable for high resolution molecular spectroscopy.