After more than a decade, direct observation of the odd frequency triplet pairing state in super- conducting hybrid structures remains elusive. We propose an experimentally feasible setup that can unambiguously reveal the zero energy peak due to proximity-induced equal spin superconducting triplet correlations. We theoretically investigate a two dimensional Josephson junction in the diffu- sive regime. The nanostructure consists of a normal metal sandwiched between two ferromagnetic layers with spiral magnetization patterns. By applying an external magnetic field perpendicular to the junction plane, vortices nucleate in the normal metal. The calculated energy and spatially resolved density of states, along with the pair potential, reveal that remarkably, only triplet Cooper pairs survive in the vortex cores. These isolated odd frequency triplet correlations result in well defined zero energy peaks in the local density of states that can be identified through tunneling spectroscopy experiments. Moreover, the diffusive regime considered here rules out the possibility of Andreev bound states in the vortex core as contributors to the zero energy peaks.