Do you want to publish a course? Click here

A Metric for Performance Portability

76   0   0.0 ( 0 )
 Added by Simon Pennycook
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The term performance portability has been informally used in computing to refer to a variety of notions which generally include: 1) the ability to run one application across multiple hardware platforms; and 2) achieving some notional level of performance on these platforms. However, there has been a noticeable lack of consensus on the precise meaning of the term, and authors conclusions regarding their success (or failure) to achieve performance portability have thus been subjective. Comparing one approach to performance portability with another has generally been marked with vague claims and verbose, qualitative explanation of the comparison. This paper presents a concise definition for performance portability, along with a simple metric that accurately captures the performance and portability of an application across different platforms. The utility of this metric is then demonstrated with a retroactive application to previous work.

rate research

Read More

Accurate hardware performance models are critical to efficient code generation. They can be used by compilers to make heuristic decisions, by superoptimizers as a minimization objective, or by autotuners to find an optimal configuration for a specific program. However, they are difficult to develop because contemporary processors are complex, and the recent proliferation of deep learning accelerators has increased the development burden. We demonstrate a method of learning performance models from a corpus of tensor computation graph programs for Tensor Processing Unit (TPU) instances. We show that our learned model outperforms a heavily-optimized analytical performance model on two tasks -- tile-size selection and operator fusion -- and that it helps an autotuner discover faster programs in a setting where access to TPUs is limited or expensive.
Python has become the de facto language for scientific computing. Programming in Python is highly productive, mainly due to its rich science-oriented software ecosystem built around the NumPy module. As a result, the demand for Python support in High Performance Computing (HPC) has skyrocketed. However, the Python language itself does not necessarily offer high performance. In this work, we present a workflow that retains Pythons high productivity while achieving portable performance across different architectures. The workflows key features are HPC-oriented language extensions and a set of automatic optimizations powered by a data-centric intermediate representation. We show performance results and scaling across CPU, GPU, FPGA, and the Piz Daint supercomputer (up to 23,328 cores), with 2.47x and 3.75x speedups over previous-best solutions, first-ever Xilinx and Intel FPGA results of annotated Python, and up to 93.16% scaling efficiency on 512 nodes.
Lattice Boltzmann methods (LBM) are an important part of current computational fluid dynamics (CFD). They allow easy implementations and boundary handling. However, competitive time to solution not only depends on the choice of a reasonable method, but also on an efficient implementation on modern hardware. Hence, performance optimization has a long history in the lattice Boltzmann community. A variety of options exists regarding the implementation with direct impact on the solver performance. Experimenting and evaluating each option often is hard as the kernel itself is typically embedded in a larger code base. With our suite of lattice Boltzmann kernels we provide the infrastructure for such endeavors. Already included are several kernels ranging from simple to fully optimized implementations. Although these kernels are not fully functional CFD solvers, they are equipped with a solid verification method. The kernels may act as an reference for performance comparisons and as a blue print for optimization strategies. In this paper we give an overview of already available kernels, establish a performance model for each kernel, and show a comparison of implementations and recent architectures.
Cloud computing has become increasingly popular. Many options of cloud deployments are available. Testing cloud performance would enable us to choose a cloud deployment based on the requirements. In this paper, we present an innovative process, implemented in software, to allow us to assess the quality of the cloud performance data. The process combines performance data from multiple machines, spanning across user experience data, workload performance metrics, and readily available system performance data. Furthermore, we discuss the major challenges of bringing raw data into tidy data formats in order to enable subsequent analysis, and describe how our process has several layers of assessment to validate the quality of the data processing procedure. We present a case study to demonstrate the effectiveness of our proposed process, and conclude our paper with several future research directions worth investigating.
GPUs offer several times the floating point performance and memory bandwidth of current standard two socket CPU servers, e.g. NVIDIA C2070 vs. Intel Xeon Westmere X5650. The lattice Boltzmann method has been established as a flow solver in recent years and was one of the first flow solvers to be successfully ported and that performs well on GPUs. We demonstrate advanced optimization strategies for a D3Q19 lattice Boltzmann based incompressible flow solver for GPGPUs and CPUs based on NVIDIA CUDA and OpenCL. Since the implemented algorithm is limited by memory bandwidth, we concentrate on improving memory access. Basic data layout issues for optimal data access are explained and discussed. Furthermore, the algorithmic steps are rearranged to improve scattered access of the GPU memory. The importance of occupancy is discussed as well as optimization strategies to improve overall concurrency. We arrive at a well-optimized GPU kernel, which is integrated into a larger framework that can handle single phase fluid flow simulations as well as particle-laden flows. Our 3D LBM GPU implementation reaches up to 650 MLUPS in single precision and 290 MLUPS in double precision on an NVIDIA Tesla C2070.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا