No Arabic abstract
It is believed that the hard X-ray emission in the luminous active galactic nuclei (AGNs) is from the hot corona above the cool accretion disk. However, the formation of the corona is still debated. Liu et al. investigated the spectrum of the corona heated by the reconnection of the magnetic field generated by dynamo action in the thin disk and emerging into the corona as a result of buoyancy instability. In the present paper, we improve this model to interpret the observed relation of the hard X-ray spectrum becoming softer at higher accretion rate in luminous AGNs. The magnetic field is characterized by $beta_{rm 0}$, i.e., the ratio of the sum of gas pressure and radiation pressure to magnetic pressure in the disk ($beta_{rm 0}=(P_{rm g,d}+P_{rm r,d})/P_{rm B}$). Besides, both the intrinsic disk photons and reprocessed photons by the disk are included as the seed photons for inverse Compton scattering. These improvements are crucial for investigating the effect of magnetic field on the accretion disk-corona when it is not clear whether the radiation pressure or gas pressure dominates in thin disk. We change the value of $beta_{rm 0}$ in order to constrain the magnetic field in the accretion disk. We find that the energy fraction released in the corona ($f$) gradually increases with the decrease of $beta_{rm 0}$ for the same accretion rate. When $beta_{rm 0}$ decreases to less than 50, the structure and spectrum of the disk-corona is independent on accretion rate, which is similar to the hard spectrum found in Liu et al.(2003). Comparing with the observational results of the hard X-ray bolometric correction factor in a sample of luminous AGNs, we suggest that the value of $beta_{rm 0}$ is about 100-200 for $alpha=0.3$ and the energy fraction $f$ should be larger than $30%$ for hard X-ray emission.
A long-standing question in active galactic nucleus (AGN) research is how the corona is heated up to produce X-ray radiation much stronger than that arising from the viscous heating within the corona. In this paper, we carry out detailed investigations of magnetic-reconnection heating to the corona, specifically, studying how the disc and corona are self-consistently coupled with the magnetic field, and how the emergent spectra depend on the fundamental parameters of AGN. It is shown that diverse spectral shapes and luminosities over a broad bandpass from optical to X-ray can be produced from the coupled disc and corona within a limited range of the black hole mass, accretion rate and magnetic field strength. The relative strength of X-ray emission with respect to optical/ultraviolet (UV) depends on the strength of the magnetic field in the disc, which, together with accretion rate, determines the fraction of accretion energy transported and released in the corona. This refined disc-corona model is then applied to reproduce the broad-band spectral energy distributions (SEDs) of a sample of 20 bright local AGNs observed simultaneously in X-ray and optical/UV. We find that, in general, the overall observed broad-band SEDs can be reasonably reproduced, except for rather hard X-ray spectral shapes in some objects. The radiation pressure-dominant region, as previously predicted for the standard accretion disc in AGN, disappears for strong X-ray sources, revealing that AGN accretion discs are indeed commonly stable as observed. Our study suggests the disc-corona coupling model involving magnetic fields to be a promising approach for understanding the broad-band spectra of bright AGNs.
Fast magnetic reconnection events can be a very powerful mechanism operating at the jet launching region of microquasars and AGNs. We have recently found that the power released by reconnection between the magnetic field lines of the coronal inner disk region and the lines anchored into the black hole is able to accelerate relativistic particles through a first-order Fermi process and produce the observed radio luminosity from both microquasars and low luminous AGNs (LLAGNs). We also found that the observed correlation between the radio luminosity and the mass of these sources, spanning 10^9 orders of magnitude in mass, is naturally explained by this process. In this work, assuming that the gamma-ray emission is probably originated in the same acceleration zones that produce the radio emission, we have applied the scenario above to investigate the origin of the high energy outcomes from an extensive number of sources including high (HLAGNs) and LLAGNs, microquasars and GRBs. We find correlation of our model with the gamma emission only for microquasars and a few LLAGNs, while none of the HLAGNs or GRBs are fitted, neither in radio nor in gamma. We attribute the lack of correlation of the gamma emission for most of the LLAGNs to the fact that this processed emission doesnt depend only on the local magnetic field activity around the source/accretion disk, but also on other environmental factors like the photon and density fields. We conclude that the emission from the LLAGNs and microquasars comes from the nuclear region of their sources and therefore, can be driven by nuclear magnetic activity. However, in the case of the HLAGNs and GRBs, the nuclear emission is blocked by the surrounding density and photon fields and therefore, we can only see the jet emission further out.
We investigate the accretion process in high-luminosity AGNs (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than $0.02dot{M}_{rm Edd}$; while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpret HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons and thereby radiated away. We for the first time, compute the corona structure with additional heating, taking fully into account the mass supply to the corona and find that the corona could indeed survive at higher accretion rates and its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton dominated spectrum becomes harder with the increase of energy fraction ($f$) liberating in the corona, and the photon index for hard X-ray($2-10 rm keV$) is $2.2 < Gamma < 2.7 $. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at larger accretion rate and the bolometric correction factor ($L_{rm bol}/L_{rm 2-10keV}$) increases with increasing accretion rate for $f<8/35$, which is roughly consistent with the observational results.
Magnetic reconnection, a fundamentally important process in many aspects of astrophysics, is believed to be initiated by the tearing instability of an electric current sheet, a region where magnetic field abruptly changes direction and electric currents build up. Recent studies have suggested that the amount of magnetic shear in these structures is a critical parameter for the switch-on nature of magnetic reconnection in the solar atmosphere, at fluid spatial scales much larger than kinetic scales. We present results of simulations of reconnection in 3D current sheets with conditions appropriate to the solar corona. Using high-fidelity simulations, we follow the evolution of the linear and non-linear 3D tearing instability, leading to reconnection. We find that, depending on the parameter space, magnetic shear can play a vital role in the onset of significant energy release and heating via non-linear tearing. Two regimes in our study exist, dependent on whether the current sheet is longer or shorter than the wavelength of the fastest growing parallel mode (in the corresponding infinite system), thus determining whether sub-harmonics are present in the actual system. In one regime, where the fastest growing parallel mode has sub-harmonics, the non-linear interaction of these sub-harmonics and the coalescence of 3D plasmoids dominates the non-linear evolution, with magnetic shear playing only a weak role in the amount of energy released. In the second regime, where the fastest growing parallel mode has no-sub-harmonics, then only strongly sheared current sheets, where oblique mode are strong enough to compete with the dominant parallel mode, show any significant energy release. We expect both regimes to exist on the Sun, and so our results have important consequences for the the question of reconnection onset in different solar physics applications.
Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and AGNs. In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lifting from the inner accretion disk region and the lines anchored into the central black hole could accelerate relativistic particles and produce the observed radio emission from microquasars and low luminosity AGNs (LLAGNs). Moreover, it has been proposed that the observed correlation between the radio emission and the mass of these sources, spanning $10^{10}$ orders of magnitude in mass, might be related to this process. In the present work, we revisit this model comparing two different fast magnetic reconnection mechanisms, namely, fast reconnection driven by anomalous resistivity (AR) and by turbulence (as described in Lazarian and Vishiniac 1999). We apply the scenario above to a much larger sample of sources (including also blazars, and gamma-ray bursts - GRBs), and find that LLAGNs and microquasars do confirm the trend above. Furthermore, when driven by turbulence, not only their radio but also their gamma-ray emission can be due to magnetic power released by fast reconnection, which may accelerate particles to relativistic velocities in the core region of these sources. Thus the turbulent-driven fast reconnection model is able to reproduce better the observed emission than the AR model. On the other hand, the emission from blazars and GRBs does not follow the same trend as that of the LLAGNs and microquasars, suggesting that the radio and gamma-ray emission in these cases is produced further out along the jet, by another population of relativistic particles, as expected.