Probing magnetic fields with Square Kilometre array and its precursors


Abstract in English

Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has hampered its study. The first phase of Square Kilometre Array (SKA-I), will have more than an order of magnitude higher sensitivity than existing radio telescopes. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarisation and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic medium. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data with models which consider various processes giving rise to field amplification and maintenance will then be possible. Such observations will also provide the coherence scale of the fields and measure its random component. Measuring the random component is important to characterise turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field very close (<pc) to the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various models of field configurations with observations.

Download