Do you want to publish a course? Click here

$beta$-particle energy-summing correction for $beta$-delayed proton emission measurements

127   0   0.0 ( 0 )
 Added by Zach Meisel
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A common approach to studying $beta$-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the $beta$-delayed proton emitting ($beta$p) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the $beta$-particle emitted from the $beta$p nucleus, an effect referred to here as $beta$-summing. We present an approach to determine an accurate correction for $beta$-summing. Our method relies on the determination of the mean implantation depth of the $beta$p nucleus within the DSSD by analyzing the shape of the total (proton + recoil + $beta$) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.



rate research

Read More

The beta+ decay of very neutron deficient 43Cr has been studied by means of an imaging time projection chamber which allowed recording tracks of charged particles. Events of beta-delayed emission of one-, two-, and three protons were clearly identified. The absolute branching ratios for these channels were determined to be 81(4)%, 7.1(4)%, and 0.08(3)%, respectively. The 43Cr is thus established as the second case in which the beta-3p decay occurs. Although the feeding to the proton-bound states in 43V is expected to be negligible, the large branching ratio of 12(4)% for decays without proton emission is found.
Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.
The Neutrino Experiment with a Xenon TPC (NEXT) is intended to investigate the neutrinoless double beta decay of 136Xe, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionuclides are summarized, being the values obtained for some materials like copper and stainless steel very competitive. The implications of these results for the NEXT experiment are also discussed.
The correlations of the decay products following the beta decay of nuclei have a long history of providing a low-energy probe of the fundamental symmetries of our universe. Over half a century ago, the correlation of the electrons following the decay of polarized 60Co demonstrated that parity is not conserved in weak interactions. Today, the same basic idea continues to be applied to search for physics beyond the standard model: make precision measurements of correlation parameters and look for deviations compared to their standard model predictions. Efforts to measure these parameters to the 0.1% level utilizing atom and ion trapping techniques are described.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next generation of tonnescale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First data taken with the DEMONSTRATOR are introduced here.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا