Do you want to publish a course? Click here

Searching for metal-deficient emission-line galaxy candidates: the final sample of the SDSS DR12 galaxies

59   0   0.0 ( 0 )
 Added by Yuri Izotov I.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a spectroscopic study of metal-deficient dwarf galaxy candidates, selected from the SDSS DR12. The oxygen abundances were derived using the direct method in galaxies with the electron temperature-sensitive emission line [OIII]4363A measured with an accuracy better than 30%. The oxygen abundances for the remaining galaxies with larger uncertainties of the [OIII]4363A line fluxes were calculated using a strong-line semi-empirical method by Izotov and Thuan. The resulting sample consists of 287 low-metallicity candidates with oxygen abundances below 12+logO/H=7.65 including 23 extremely metal-deficient (XMD) candidates with 12+log O/H<7.35. Ten out of sixteen XMDs known so far (or ~60%) have been discovered by our team using the direct method. Three XMDs were found in the present study. We study relations between global parameters of low-metallicity galaxies, including absolute optical magnitudes, Hbeta luminosities (or equivalently star formation rates), stellar masses, mid-infrared colours, and oxygen abundances. Low-metallicity and XMD galaxies strongly deviate to lower metallicities in L-Z, L(Hbeta)-Z and Mstar-Z diagrams than in relations obtained for large samples of low-redshift, star-forming galaxies with non-restricted metallicities. These less chemically evolved galaxies with stellar masses ~10^6-10^8Msun, Hbeta luminosities ~10^38-10^41 erg/s, SFR~0.01-1.0Msun/yr, and sSFR~50 Gyr^-1 have physical conditions which may be characteristic of high-redshift low-mass star-forming galaxies which are still awaiting discovery.



rate research

Read More

We apply the Alcock-Paczynski (AP) test to the stacked voids identified using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We also use 1000 mock galaxy catalogs that match the geometry, density, and clustering properties of the BOSS sample in order to characterize the statistical uncertainties of our measurements and take into account systematic errors such as redshift space distortions. For both BOSS data and mock catalogs, we use the ZOBOV algorithm to identify voids, we stack together all voids with effective radii of 30-100Mpc/h in the redshift range 0.43-0.7, and we accurately measure the shape of the stacked voids. Our tests with the mock catalogs show that we measure the stacked void ellipticity with a statistical precision of 2.6%. We find that the stacked voids in redshift space are slightly squashed along the line of sight, which is consistent with previous studies. We repeat this measurement of stacked void shape in the BOSS data assuming several values of Omega_m within the flat LCDM model, and we compare to the mock catalogs in redshift space in order to perform the AP test. We obtain a constraint of $Omega_m = 0.38^{+0.18}_{-0.15}$ at the 68% confidence level from the AP test. We discuss the various sources of statistical and systematic noise that affect the constraining power of this method. In particular, we find that the measured ellipticity of stacked voids scales more weakly with cosmology than the standard AP prediction, leading to significantly weaker constraints. We discuss how AP constraints will improve in future surveys with larger volumes and densities.
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature {Omega}_K =0.0003+/-0.0026 and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant ({Lambda}CDM). Our RSD measurements of f{sigma}_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat {Lambda}CDM we find {Omega}_m = 0.310+/-0.005 and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of 0.16 eV/c^2 on the neutrino mass sum.
We describe the algorithm used to select the Emission Line Galaxy (ELG) sample at $z sim 0.85$ for the extended Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey IV, using photometric data from the DECam Legacy Survey. Our selection is based on a selection box in the $g-r$ vs. $r-z$ colour-colour space and a cut on the $g$-band magnitude, to favour galaxies in the desired redshift range with strong [OII] emission. It provides a target density of 200 deg$^{-2}$ on the North Galactic Cap (NGC) and of 240 deg$^{-2}$ on the South Galactic Cap (SGC), where we use a larger selection box because of deeper imaging. We demonstrate that this selection passes the eBOSS requirements in terms of homogeneity. About 50,000 ELGs have been observed since the observations have started in 2016, September. These roughly match the expected redshift distribution, though the measured efficiency is slightly lower than expected. The efficiency can be increased by enlarging the redshift range and with incoming pipeline improvement. The cosmological forecast based on these first data predict $sigma_{D_V}/D_V = 0.023$, in agreement with previous forecasts. Lastly, we present the stellar population properties of the ELG SGC sample. Once observations are completed, this sample will be suited to provide a cosmological analysis at $z sim 0.85$, and will pave the way for the next decade of massive spectroscopic cosmological surveys, which heavily rely on ELGs. The target catalogue over the SGC will be released along with DR14.
We present spectroscopy of emission lines for 81 Seyfert 1 and 104 Seyfert 2 galaxies in the IRAS 12$mu$m galaxy sample. We analyzed the emission-line luminosity functions, reddening, and other gas diagnostics. The narrow-line regions (NLR) of Sy1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the H$alpha$/H$beta$ ratio with a new reddening indicator-the [SII]6720/[OII]3727 ratio, we find the average $E(B-V)=0.49pm0.35$ for Sy1s and $0.52pm0.26$ for Sy2s. The NLR of Sy1 galaxies has only marginally higher ionization than the Sy2s. Our sample includes 22 Sy1.9s and 1.8s. In their narrow lines, these low-luminosity Seyferts are more similar to the Sy2s than the Sy1s. We construct a BPT diagram, and include the Sy1.8s and 1.9s. They overlap the region occupied by the Sy2s. The C IV equivalent width correlates more strongly with [O III]/H$beta$ than with UV luminosity. The Sy1 and Sy2 luminosity functions of [OII]3727 and [OIII]5007 are indistinguishable. Unlike the LFs of Seyfert galaxies measured by SDSS, ours are nearly flat at low L. The larger number of faint Sloan AGN is attributable to their inclusion of weakly emitting LINERs and H II+AGN composite nuclei, which do not meet our classification criteria for Seyferts. An Appendix investigates which emission line luminosities provide the most reliable measures of the total non-stellar luminosity. The hard X-ray or near-ultraviolet continuum luminosity can be crudely predicted from either the [O III]5007 luminosity, or the combination of [O III]+H$beta$, or [N II]+H$alpha$ lines, with a scatter of $pm,4$ times for the Sy1s and $pm,10$ times for the Sy2s. The latter two hybrid (NLR+BLR) indicators have the advantage of predicting the same HX luminosity independent of Seyfert type.
We present 2000 mock galaxy catalogs for the analysis of baryon acoustic oscillations in the Emission Line Galaxy (ELG) sample of the Extended Baryon Oscillation Spectroscopic Survey Data Release 16 (eBOSS DR16). Each mock catalog has a number density of $6.7 times 10^{-4} h^3 rm Mpc^{-3}$, covering a redshift range from 0.6 to 1.1. The mocks are calibrated to small-scale eBOSS ELG clustering measurements at scales of around 10 $h^{-1}$Mpc. The mock catalogs are generated using a combination of GaLAxy Mocks (GLAM) simulations and the Quick Particle-Mesh (QPM) method. GLAM simulations are used to generate the density field, which is then assigned dark matter halos using the QPM method. Halos are populated with galaxies using a halo occupation distribution (HOD). The resulting mocks match the survey geometry and selection function of the data, and have slightly higher number density which allows room for systematic analysis. The large-scale clustering of mocks at the baryon acoustic oscillation (BAO) scale is consistent with data and we present the correlation matrix of the mocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا