Do you want to publish a course? Click here

Long time scaling behaviour for diffusion with resetting and memory

72   0   0.0 ( 0 )
 Added by Martin Evans
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a continuous-space and continuous-time diffusion process under resetting with memory. A particle resets to a position chosen from its trajectory in the past according to a memory kernel. Depending on the form of the memory kernel, we show analytically how different asymptotic behaviours of the variance of the particle position emerge at long times. These range from standard diffusive ($sigma^2 sim t$) all the way to anomalous ultraslow growth $sigma^2 sim ln ln t$.



rate research

Read More

We consider the mean time to absorption by an absorbing target of a diffusive particle with the addition of a process whereby the particle is reset to its initial position with rate $r$. We consider several generalisations of the model of M. R. Evans and S. N. Majumdar (2011), Diffusion with stochastic resetting, Phys. Rev. Lett. 106, 160601: (i) a space dependent resetting rate $r(x)$ ii) resetting to a random position $z$ drawn from a resetting distribution ${cal P}(z)$ iii) a spatial distribution for the absorbing target $P_T(x)$. As an example of (i) we show that the introduction of a non-resetting window around the initial position can reduce the mean time to absorption provided that the initial position is sufficiently far from the target. We address the problem of optimal resetting, that is, minimising the mean time to absorption for a given target distribution. For an exponentially decaying target distribution centred at the origin we show that a transition in the optimal resetting distribution occurs as the target distribution narrows.
We consider diffusion in arbitrary spatial dimension d with the addition of a resetting process wherein the diffusive particle stochastically resets to a fixed position at a constant rate $r$. We compute the non-equilibrium stationary state which exhibits non-Gaussian behaviour. We then consider the presence of an absorbing target centred at the origin and compute the survival probability and mean time to absorption of the diffusive particle by the target. The mean absorption time is finite and has a minimum value at an optimal resetting rate $r^*$ which depends on dimension. Finally we consider the problem of a finite density of diffusive particles, each resetting to its own initial position. While the typical survival probability of the target at the origin decays exponentially with time regardless of spatial dimension, the average survival probability decays asymptotically as $exp -A (log t)^d$ where $A$ is a constant. We explain these findings using an interpretation as a renewal process and arguments invoking extreme value statistics.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stochastically reset to a given position with a resetting rate $r$. The mean squared displacements of the CTRW and L{e}vy walks with stochastic resetting are calculated, uncovering that the stochastic resetting always makes the CTRW process localized and L{e}vy walk diffuse slower. The asymptotic behaviors of the probability density function of Levy walk with stochastic resetting are carefully analyzed under different scales of $x$, and a striking influence of stochastic resetting is observed.
We study generalized diffusion-wave equation in which the second order time derivative is replaced by integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا