No Arabic abstract
We investigated the star formation activities in the AFGL333 region, which is in the vicinity of the W4 expanding bubble, by conducting NH3 (1,1), (2,2), and (3,3) mapping observations with the 45 m Nobeyama Radio Telescope at an angular resolution of 75. The morphology of the NH3 (1,1) map shows a bow-shape structure with the size of 2.0 x 0.6 pc as seen in the dust continuum. At the interface between the W4 bubble and the dense NH3 cloud, the compact HII region G134.2+0.8, associated with IRAS02245+6115, is located. Interestingly, just north and south of G134.2+0.8 we found NH3 emission exhibiting large velocity widths of ~ 2.8 km/s, compared to 1.8 km/s at the other positions. As the possibility of mechanical energy injection through the activity of YSO(s) is low, we considered the origin of the large turbulent gas motion as indication of interaction between the compact HII region and the periphery of the dense molecular cloud. We also found expanding motion of the CO emission associated with G134.2+0.8. The overall structure of the AFGL333-Ridge might have been formed by the expanding bubble of W4. However, the small velocity widths observed west of IRAS02245+6115, around the center of the dense molecular cloud, suggest that interaction with the compact HII region is limited. Therefore the YSOs (dominantly Class 0/I) in the core of the AFGL333-Ridge dense molecular cloud most likely formed in quiescent mode. As has been previously suggested for the large scale star formation in the W3 giant molecular cloud, our results show an apparent coexistence of induced and quiescent star formation in this region. It appears that star formation in the AFGL333 region has proceeded without significant external triggers, but accompanying stellar feedback environment.
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.
We report on a study of the high-mass star formation in the the HII region W28A2 by investigating the molecular clouds extended over ~5-10 pc from the exciting stars using the 12CO and 13CO (J=1-0) and 12CO (J=2-1) data taken by the NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with the CO intensity peaks at V_LSR ~ -4 km s$^{-1}$, 9 km s$^{-1}$ and 16 km s$^{-1}$. The highest CO intensity is detected at V_LSR ~ 9 km s$^{-1}$, where the high-mass stars with the spectral types of O6.5-B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 um infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J=2-1 to 1-0 intensity ratio shows a high value (> 0.8) toward the exciting sources for the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (V_LSR ~ 9 km s$^{-1}$) lowers down to ~0.6, suggesting self absorption by the dense gas in the near side of the +9 km s$^{-1}$ cloud. We found partly complementary gas distributions between the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, and the -4 km s$^{-1}$ and +16 km s$^{-1}$ clouds. The exciting sources are located toward the overlapping region in the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds. Similar gas properties are found in the Galactic massive star clusters, RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss a possibility of the formation of high-mass stars in the W28A2 region triggered by the cloud-cloud collision.
HII regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing towards the ionizing sources, and cometary globules of dense gas, where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic HII region located at about 4 kpc, is an excellent target to perform this kind of studies. Using public molecular data extracted from the Galactic Ring Survey (13CO J=1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J=3-2, HCO+ and HCN J=4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment and the young stellar objects placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission towards its open border. We found that about 10 towards the southwest of G46 there are some pillar-like features, shining at 8 um and pointing towards the HII region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several young stellar objects likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and other one mostly composed by Class I type YSOs located just ahead the pillars-like features, strongly suggesting an age gradient in the YSOs distribution.
Magnetic fields are ubiquitous and essential in star formation. In particular, their role in regulating formation of stars across diverse environments like HII regions needs to be well understood. In this study, we present magnetic field properties towards the S235 complex using near-infrared (NIR) $H$-band polarimetric observations, obtained with the Mimir and POLICAN instruments. We selected 375 background stars in the field through combination of Gaia distances and extinctions from NIR colors. The plane-of-sky (POS) magnetic field orientations inferred from starlight polarization angles reveal a curved morphology tracing the spherical shell of the HII region. The large-scale magnetic field traced by Planck is parallel to the Galactic plane. We identified 11 dense clumps using $1.1,mathrm{mm}$ dust emission, with masses between $33-525,rm M_odot$. The clump averaged POS magnetic field strengths were estimated to be between $36-121,mathrm{mu G}$, with a mean of ${sim}65,mathrm{mu G}$. The mass-to-flux ratios for the clumps are found to be sub-critical with turbulent Alfv{e}n Mach numbers less than 1, indicating a strongly magnetized region. The clumps show scaling of magnetic field strength vs density with a power-law index of $0.52pm0.07$, similar to ambipolar diffusion models. Our results indicate the S235 complex is a region where stellar feedback triggers new stars and the magnetic fields regulate the rate of new star formation.
Stars form with a complex and highly structured distribution. For a smooth star cluster to form from these initial conditions, the star cluster must erase this substructure. We study how substructure is removed using N-body simulations that realistically handle two-body relaxation. In contrast to previous studies, we find that hierarchical cluster formation occurs chiefly as a result of scattering of stars out of clumps, and not through clump merging. Two-body relaxation, in particular within the body of a clump, can significantly increase the rate at which substructure is erased beyond that of clump-merging alone. Hence the relaxation time of individual clumps is a key parameter controlling the rate at which smooth, spherical star clusters can form. The initial virial ratio of the clumps is an additional key parameter controlling the formation rate of a cluster. Reducing the initial virial ratio causes a star cluster to lose its substructure more rapidly.