Do you want to publish a course? Click here

Emergence of $eta$-pairing ground-state in population-imbalanced attractive Fermi-gases filling $p$ orbitals on 1-D optical lattice

152   0   0.0 ( 0 )
 Added by Keita Kobayashi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the ground states in population-imbalanced attractive 1-D fermionic optical lattice filling $p$ orbitals over the lowest $s$ one by using the density-matrix-renormalization-group (DMRG) method. The DMRG calculations find the occurrence of spatially non-uniform off-diagonal long-range order. In contrast to Fulde-Ferrel Larkin-Ovchinikov pair as observed in the single-band Hubbard model. The spatial oscillation period of the pair correlation function is widely fixed to be $pi$ irrespective of the mismatch between spin-split Fermi surfaces. The ground-state $pi$ order corresponds to $eta$-pair condensate predicted by Yang [Phys. Rev. Lett. textbf{63}, 2144 (1989)]. Taking account of the effects of harmonic traps, we confirm that the $eta$-pair state distinctly emerges at the center of the trap potential surrounded by perfectly-polarized states even in the trapped cases.



rate research

Read More

We study a two species fermion mixture with different populations on a square lattice modeled by a Hubbard Hamiltonian with on-site inter-species repulsive interaction. Such a model can be realized in a cold atom system with fermionic atoms in two different hyperfine states loaded on an optical lattice and with tunable inter-species interaction strength via external fields. For a two-dimensional square lattice, when at least one of the fermion species is close to half-filling, the system is highly affected by lattice effects. With the majority species near half-filling and varying densities for the minority species, we find that several correlated phases emerge as the ground state, including a spin density wave state, a charge density wave state with stripe structure, and various p-wave BCS pairing states for both species. We study this system using a functional renormalization group method, determine its phase diagram at weak coupling, discuss the origin and characteristics of each phase, and provide estimates for the critical temperatures.
Radio-frequency spectroscopy is used to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances the system does not become superfluid even at zero temperature. In this normal phase full pairing of the minority atoms is observed. This demonstrates that mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.
202 - Fei Ye , Yan Chen , Z. D. Wang 2009
The imbalanced superfluid state of spin-1/2 fermions with s-wave pairing is numerically studied by solving the Bogoliubov-de-Gennes equation at zero temperature in an annular disk geometry with narrow radial width. Two distinct types of systems are considered. The first case may be relevant to heavy fermion superconductors, where magnetic field causes spin imbalance via Zeeman interaction and the system is studied in a grand canonical ensemble. As the magnetic field increases, the system is transformed from the uniform superfluid state to the Fulde-Ferrell-Larkin-Ovchinnikov state, and finally to the spin polarized normal state. The second case may be relevant to cold fermionic systems, where the numbers of fermions of each species are fixed as in a canonical ensemble. In this case, the groundstate depends on the pairing strength. For weak pairing, the order parameter exhibits a periodic domain wall lattice pattern with a localized spin distribution at low spin imbalance, and a sinusoidally modulated pattern with extended spin distribution at high spin imbalance. For strong pairing, the phase separation between superfluid state and polarized normal state is found to be more preferable, while the increase of spin imbalance simply changes the ratio between them.
We determine the radio-frequency (RF) spectra for non-stationary states of a fermionic condensate produced by a rapid switch of the scattering length. The RF spectrum of the nonequilibrium state with constant BCS order parameter has two features in contrast to equilibrium where there is a single peak. The additional feature reflects the presence of excited pairs in the steady state. In the state characterized by periodically oscillating order parameter RF-absorption spectrum contains two sequences of peaks spaced by the frequency of oscillations. Satellite peaks appear due to a process where an RF photon in addition to breaking a pair emits/absorbs oscillation quanta.
We study population imbalanced Fermi mixtures under quasi-two-dimensional confinement at zero temperature. Using mean-field theory and the local-density approximation, we study the ground state configuration throughout the BEC-BCS crossover. We find the trapped system to be either fully normal or to consist of a superfluid core surrounded by a normal shell, which is itself either fully or partially polarized. Upon changing the trap imbalance, the trap configuration may undergo continuous transitions between the different ground states. Finally, we argue that thermal equilibration throughout the trap will be considerably slowed down at low temperatures when a superfluid phase is present.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا