Weakly Horospherically Convex Hypersurfaces in Hyperbolic Space


Abstract in English

In [2], the authors develop a global correspondence between immersed weakly horospherically convex hypersurfaces $phi:M^n to mathbb{H}^{n+1}$ and a class of conformal metrics on domains of the round sphere $mathbb{S}^n$. Some of the key aspects of the correspondence and its consequences have dimensional restrictions $ngeq3$ due to the reliance on an analytic proposition from [5] concerning the asymptotic behavior of conformal factors of conformal metrics on domains of $mathbb{S}^n$. In this paper, we prove a new lemma about the asymptotic behavior of a functional combining the gradient of the conformal factor and itself, which allows us to extend the global correspondence and embeddedness theorems of [2] to all dimensions $ngeq2$ in a unified way. In the case of a single point boundary $partial_{infty}phi(M)={x} subset mathbb{S}^n$, we improve these results in one direction. As an immediate consequence of this improvement and the work on elliptic problems in [2], we have a new, stronger Bernstein type theorem. Moreover, we are able to extend the Liouville and Delaunay type theorems from [2] to the case of surfaces in $mathbb{H}^{3}$.

Download