No Arabic abstract
In [2], the authors develop a global correspondence between immersed weakly horospherically convex hypersurfaces $phi:M^n to mathbb{H}^{n+1}$ and a class of conformal metrics on domains of the round sphere $mathbb{S}^n$. Some of the key aspects of the correspondence and its consequences have dimensional restrictions $ngeq3$ due to the reliance on an analytic proposition from [5] concerning the asymptotic behavior of conformal factors of conformal metrics on domains of $mathbb{S}^n$. In this paper, we prove a new lemma about the asymptotic behavior of a functional combining the gradient of the conformal factor and itself, which allows us to extend the global correspondence and embeddedness theorems of [2] to all dimensions $ngeq2$ in a unified way. In the case of a single point boundary $partial_{infty}phi(M)={x} subset mathbb{S}^n$, we improve these results in one direction. As an immediate consequence of this improvement and the work on elliptic problems in [2], we have a new, stronger Bernstein type theorem. Moreover, we are able to extend the Liouville and Delaunay type theorems from [2] to the case of surfaces in $mathbb{H}^{3}$.
We prove that the static convexity is preserved along two kinds of locally constrained curvature flows in hyperbolic space. Using the static convexity of the flow hypersurfaces, we prove new family of geometric inequalities for such hypersurfaces in hyperbolic space.
We study the uniqueness of horospheres and equidistant spheres in hyperbolic space under different conditions. First we generalize the Bernstein theorem by Do Carmo and Lawson to the embedded hypersurfaces with constant higher order mean curvature. Then we prove two Bernstein type results for immersed hypersurfaces under different assumptions. Last, we show the rigidity of horospheres and equidistant spheres in terms of their higher order mean curvatures.
In the last 15 years, White and Huisken-Sinestrari developed a far-reaching structure theory for the mean curvature flow of mean convex hypersurfaces. Their papers provide a package of estimates and structural results that yield a precise description of singularities and of high curvature regions in a mean convex flow. In the present paper, we give a new treatment of the theory of mean convex (and k-convex) flows. This includes: (1) an estimate for derivatives of curvatures, (2) a convexity estimate, (3) a cylindrical estimate, (4) a global convergence theorem, (5) a structure theorem for ancient solutions, and (6) a partial regularity theorem. Our new proofs are both more elementary and substantially shorter than the original arguments. Our estimates are local and universal. A key ingredient in our new approach is the new non- collapsing result of Andrews. Some parts are also inspired by the work of Perelman. In a forthcoming paper, we will give a new construction of mean curvature flow with surgery based on the theorems established in the present paper.
We prove a theorem of Hadamard-Stoker type: a connected locally convex complete hypersurface immersed in $H^n times R$ (n>1), where $H^n$ is n-dimensional hyperbolic space, is embedded and homeomorphic either to the n-sphere or to $R^n$. In the latter case it is either a vertical graph over a convex domain in $H^n$ or has what we call a simple end.
We address the problem of determining the hypersurfaces $fcolon M^{n} to mathbb{Q}_s^{n+1}(c)$ with dimension $ngeq 3$ of a pseudo-Riemannian space form of dimension $n+1$, constant curvature $c$ and index $sin {0, 1}$ for which there exists another isometric immersion $tilde{f}colon M^{n} to mathbb{Q}^{n+1}_{tilde s}(tilde{c})$ with $tilde{c} eq c$. For $ngeq 4$, we provide a complete solution by extending results for $s=0=tilde s$ by do Carmo and Dajczer and by Dajczer and the second author. Our main results are for the most interesting case $n=3$, and these are new even in the Riemannian case $s=0=tilde s$. In particular, we characterize the solutions that have dimension $n=3$ and three distinct principal curvatures. We show that these are closely related to conformally flat hypersurfaces of $mathbb{Q}_s^{4}(c)$ with three distinct principal curvatures, and we obtain a similar characterization of the latter that improves a theorem by Hertrich-Jeromin. We also derive a Ribaucour transformation for both classes of hypersurfaces, which gives a process to produce a family of new elements of those classes, starting from a given one, in terms of solutions of a linear system of PDEs. This enables us to construct explicit examples of three-dimensional solutions of the problem, as well as new explicit examples of three-dimensional conformally flat hypersurfaces that have three distinct principal curvatures.