Do you want to publish a course? Click here

Phase-driven collapse of the Cooper condensate in a nanosized superconductor

116   0   0.0 ( 0 )
 Added by Alberto Ronzani
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductivity can be understood in terms of a phase transition from an uncorrelated electron gas to a condensate of Cooper pairs in which the relative phases of the constituent electrons are coherent over macroscopic length scales. The degree of correlation is quantified by a complex-valued order parameter, whose amplitude is proportional to the strength of the pairing potential in the condensate. Supercurrent-carrying states are associated with non-zero values of the spatial gradient of the phase. The pairing potential and several physical observables of the Cooper condensate can be manipulated by means of temperature, current bias, dishomogeneities in the chemical composition or application of a magnetic field. Here we show evidence of complete suppression of the energy gap in the local density of quasiparticle states (DOS) of a superconducting nanowire upon establishing a phase difference equal to pi over a length scale comparable to the superconducting coherence length. These observations are consistent with a complete collapse of the pairing potential in the center of the wire, in accordance with theoretical modeling based on the quasiclassical theory of superconductivity in diffusive systems. Our spectroscopic data, fully exploring the phase-biased states of the condensate, highlight the profound effect that extreme phase gradients exert on the amplitude of the pairing potential. Moreover, the sharp magnetic response observed near the onset of the superconducting gap collapse regime can be exploited to realize ultra-low noise magnetic flux detectors.



rate research

Read More

We present investigations of the superconductor to insulator transition (SIT) of uniform a-Bi films using a technique sensitive to Cooper pair phase coherence. The films are perforated with a nanohoneycomb array of holes to form a multiply connected geometry and subjected to a perpendicular magnetic field. Film magnetoresistances on the superconducting side of the SIT oscillate with a period dictated by the superconducting flux quantum and the areal hole density. The oscillations disappear close to the SIT critical point to leave a monotonically rising magnetoresistance that persists in the insulating phase. These observations indicate that the Cooper pair phase coherence length, which is infinite in the superconducting phase, collapses to a value less than the interhole spacing at this SIT. This behavior is inconsistent with the gradual reduction of the phase coherence length expected for a bosonic, phase fluctuation driven SIT. This result starkly contrasts with previous observations of oscillations persisting in the insulating phase of other films implying that there must be at least two distinct classes of disorder tuned SITs.
We consider a superconductor in which the density of states at the Fermi level or the pairing interaction is driven periodically with a frequency larger than the superconducting gap in the collisionless regime. We show by numerical and analytical computations that a subset of quasiparticle excitations enter into resonance and perform synchronous Rabi oscillations leading to cyclic population inversion with a frequency that depends on the amplitude of the drive. As a consequence a new Rabi-Higgs mode emerges. Turning off the drive at different times and modulating the strength allows access to all known dynamical phases of the order parameter: persistent oscillations, oscillations with damping and overdamped dynamics. We discuss physical realizations of the drive and methods to detect the dynamics.
231 - Y. Tanaka , Y. Asano , 2007
In s-wave superconductors the Cooper pair wave function is isotropic in momentum space. This property may also be expected for Cooper pairs entering a normal metal from a superconductor due to the proximity effect. We show, however, that such a deduction is incorrect and the pairing function in a normal metal is surprisingly anisotropic because of quasiparticle interference. We calculate angle resolved quasiparticle density of states in NS bilayers which reflects such anisotropic shape of the pairing function. We also propose a magneto-tunneling spectroscopy experiment which could confirm our predictions.
Superconductivity in Dirac electrons has recently been proposed as a new platform between novel concepts in high-energy and condensed matter physics. It has been proposed that supersymmetry and exotic quasiparticles, both of which remain elusive in particle physics, may be realized as emergent particles in superconducting Dirac electron systems. Using artificially fabricated topological insulator-superconductor heterostructures, we present direct spectroscopic evidence for the existence of Cooper pairing in a half Dirac gas 2D topological superconductor. Our studies reveal that superconductivity in a helical Dirac gas is distinctly different from that of in an ordinary two-dimensional superconductor while considering the spin degrees of freedom of electrons. We further show that the pairing of Dirac electrons can be suppressed by time-reversal symmetry breaking impurities removing the distinction. Our demonstration and momentum-space imaging of Cooper pairing in a half Dirac gas and its magnetic behavior taken together serve as a critically important 2D topological superconductor platform for future testing of novel fundamental physics predictions such as emergent supersymmetry and quantum criticality in topological systems.
52 - M. Aunola , J. J. Toppari 2003
The properties of the tunnelling-charging Hamiltonian of a Cooper pair pump are well understood in the regime of weak and intermediate Josephson coupling, i.e. when $E_{mathrm{J}}lesssim E_{mathrm{C}}$. It is also known that Berrys phase is related to the pumped charge induced by the adiabatical variation of the eigenstates. We show explicitly that pumped charge in Cooper pair pump can be understood as a partial derivative of Berrys phase with respect to the phase difference $phi$ across the array. The phase fluctuations always present in real experiments can also be taken into account, although only approximately. Thus the measurement of the pumped current gives reliable, yet indirect, information on Berrys phase. As closing remarks, we give the differential relation between Berrys phase and the pumped charge, and state that the mathematical results are valid for any observable expressible as a partial derivative of the Hamiltonian.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا