Do you want to publish a course? Click here

Current systems of coronal loops in 3D MHD simulations

102   0   0.0 ( 0 )
 Added by J\\\"orn Warnecke
 Publication date 2016
  fields Physics
and research's language is English
 Authors Jorn Warnecke




Ask ChatGPT about the research

We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. We analyse a 3D MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field inside (and outside) this loop and study the magnetic and plasma properties in and around it. We find that the total current along the loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (i.e. outside the loop) caused by the plasma flow into and along the loop. The locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The acting of the flow on the magnetic field hosting the loop turns out to be also responsible for the observed squashing of the loop. The complex magnetic field and current system surrounding it can be modeled only in 3D MHD models where the magnetic field has to balance the plasma pressure. A 1D coronal loop model or a force-free extrapolation can not capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-$beta$ conditions.



rate research

Read More

Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 seconds. For this period acoustic cutoff regions are present below the transition region (TR). About 2% of the initial energy from the driver reach the corona. The shape of the cutoff regions and the height of the TR show a highly dynamic behavior. Taking only the driven waves into account, the waves have a propagating nature below and above the cutoff region, but are standing and evanescent within the cutoff region. Studying the driven waves together with the background motions in the model reveals standing waves between the cutoff region and the TR. These standing waves cause an oscillation of the TR height. In addition, fast or leaky sausage body-like waves might have been excited close to the base of the loop. These waves then possibly convert to fast or leaky sausage surface-like waves at the top of the main cutoff region, followed by a conversion to slow sausage body-like waves around the TR.
We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely structured both in space and time.
Coronal rain consists of cool and dense plasma condensations formed in coronal loops as a result of thermal instability. Previous numerical simulations of thermal instability and coronal rain formation have relied on artificially adding a coronal heating term to the energy equation. To reproduce large-scale characteristics of the corona, using more realistic coronal heating prescription is necessary. We analyse coronal rain formation and evolution in a 3-dimensional radiative magnetohydrodynamic simulation spanning from convection zone to corona which is self-consistently heated by magnetic field braiding as a result of convective motions. We investigate the spatial and temporal evolution of energy dissipation along coronal loops which become thermally unstable. Ohmic dissipation in the model leads to the heating events capable of inducing sufficient chromospheric evaporation into the loop to trigger thermal instability and condensation formation. The cooling of the thermally unstable plasma occurs on timescales comparable to the duration of the individual impulsive heating events. The impulsive heating has sufficient duration to trigger thermal instability in the loop but does not last long enough to lead to coronal rain limit cycles. We show that condensations can either survive and fall into the chromosphere or be destroyed by strong bursts of Joule heating associated with a magnetic reconnection events. In addition, we find that condensations can also form along open magnetic field lines.
To understand the nonlinear dynamics of the Parker scenario for coronal heating, long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out. A loop is modeled as a box extended along the direction of the strong magnetic field $B_0$ in which the system is embedded. At the top and bottom plates, which represent the photosphere, velocity fields mimicking photospheric motions are imposed. We show that the nonlinear dynamics is described by different regimes of MHD anisotropic turbulence, with spectra characterized by intertial range power laws whose indexes range from Kolmogorov-like values ($sim 5/3$) up to $sim 3$. We briefly describe the bearing for coronal heating rates.
Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph onboard Hinode and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using 3D radiative MHD simulations. We produce synthetic observables from the models, and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the true distributions from the model we assess the limitations of the diagnostics, as a function of the plasma parameters and of the signal-to-noise of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line-of-sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data, (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا