Optimal Key Consensus in Presence of Noise


Abstract in English

In this work, we abstract some key ingredients in previous LWE- and RLWE-based key exchange protocols, by introducing and formalizing the building tool, referred to as key consensus (KC) and its asymmetric variant AKC. KC and AKC allow two communicating parties to reach consensus from close values obtained by some secure information exchange. We then discover upper bounds on parameters for any KC and AKC. KC and AKC are fundamental to lattice based cryptography, in the sense that a list of cryptographic primitives based on LWR, LWE and RLWE (including key exchange, public-key encryption, and more) can be modularly constructed from them. As a conceptual contribution, this much simplifies the design and analysis of these cryptosystems in the future. We then design and analyze both general and highly practical KC and AKC schemes, which are referred to as OKCN and AKCN respectively for presentation simplicity. Based on KC and AKC, we present generic constructions of key exchange (KE) from LWR, LWE and RLWE. The generic construction allows versatile instantiations with our OKCN and AKCN schemes, for which we elaborate on evaluating and choosing the concrete parameters in order to achieve an optimally-balanced performance among security, computational cost, bandwidth efficiency, error rate, and operation simplicity.

Download