Do you want to publish a course? Click here

MHD boundary layers theory in Sobolev spaces without monotonicity. I. well-posedness theory

116   0   0.0 ( 0 )
 Added by Chengjie Liu Dr.
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We study the well-posedness theory for the MHD boundary layer. The boundary layer equations are governed by the Prandtl type equations that are derived from the incompressible MHD system with non-slip boundary condition on the velocity and perfectly conducting condition on the magnetic field. Under the assumption that the initial tangential magnetic field is not zero, we establish the local-in-time existence, uniqueness of solution for the nonlinear MHD boundary layer equations. Compared with the well-posedness theory of the classical Prandtl equations for which the monotonicity condition of the tangential velocity plays a crucial role, this monotonicity condition is not needed for MHD boundary layer. This justifies the physical understanding that the magnetic field has a stabilizing effect on MHD boundary layer in rigorous mathematics.



rate research

Read More

In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition for magnetic field and Dirichlet boundary condition for temperature on the boundary. When the viscosity, heat conductivity and magnetic diffusivity coefficients tend to zero in the same rate, there is a boundary layer that is described by a Prandtl-type system. By applying a coordinate transformation in terms of stream function as motivated by the recent work cite{liu2016mhdboundarylayer} on the incompressible MHD system, under the non-degeneracy condition on the tangential magnetic field, we obtain the local-in-time well-posedness of the boundary layer system in weighted Sobolev spaces.
In this paper, we are concerned with the magnetic effect on the Sobolev solvability of boundary layer equations for the 2D incompressible MHD system without resistivity. The MHD boundary layer is described by the Prandtl type equations derived from the incompressible viscous MHD system without resistivity under the no-slip boundary condition on the velocity. Assuming that the initial tangential magnetic field does not degenerate, a local-in-time well-posedness in Sobolev spaces is proved without the monotonicity condition on the velocity field. Moreover, we show that if the tangential magnetic field shear layer is degenerate at one point, then the linearized MHD boundary layer system around the shear layer profile is ill-posed in the Sobolev settings provided that the initial velocity shear flow is non-degenerately critical at the same point.
169 - Zihua Guo 2008
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation [partial_t u+|partial_x|^{1+alpha}partial_x u+uu_x=0, u(x,0)=u_0(x),] is locally well-posed in the Sobolev spaces $H^s$ for $s>1-alpha$ if $0leq alpha leq 1$. The new ingredient is that we develop the methods of Ionescu, Kenig and Tataru cite{IKT} to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet, Saut and Tzvetkovin cite{MST}. Moreover, as a bi-product we prove that if $0<alpha leq 1$ the corresponding modified equation (with the nonlinearity $pm uuu_x$) is locally well-posed in $H^s$ for $sgeq 1/2-alpha/4$.
183 - Junfeng Li , Jie Xiao 2008
In this paper we establish the local and global well-posedness of the real valued fifth order Kadomstev-Petviashvili I equation in the anisotropic Sobolev spaces with nonnegative indices. In particular, our local well-posedness improves Saut-Tzvetkovs one and our global well-posedness gives an affirmative answer to Saut-Tzvetkovs $L^2$-data conjecture.
In this paper, we mainly investigate the Cauchy problem of the non-resistive MHD equation. We first establish the local existence in the homogeneous Besov space $dot{B}^{frac{d}{p}-1}_{p,1}times dot{B}^{frac{d}{p}}_{p,1}$ with $p<infty$, and give a lifespan $T$ of the solution which depends on the norm of the Littlewood-Paley decomposition of the initial data. Then, we prove that if the initial data $(u^n_0,b^n_0)rightarrow (u_0,b_0)$ in $dot{B}^{frac{d}{p}-1}_{p,1}times dot{B}^{frac{d}{p}}_{p,1}$, then the corresponding existence times $T_nrightarrow T$, which implies that they have a common lower bound of the lifespan. Finally, we prove that the data-to-solutions map depends continuously on the initial data when $pleq 2d$. Therefore the non-resistive MHD equation is local well-posedness in the homogeneous Besov space in the Hadamard sense. Our obtained result improves considerably the recent results in cite{Li1,chemin1,Feffer2}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا