Do you want to publish a course? Click here

Combining the AFLOW GIBBS and Elastic Libraries for efficiently and robustly screening thermo-mechanical properties of solids

98   0   0.0 ( 0 )
 Added by Stefano Curtarolo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thorough characterization of the thermo-mechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and it is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential systems requires highly integrated, sophisticated and robust computational approaches. We tackled the challenge by surveying more than 3,000 crystalline solids within the AFLOW framework with the newly developed Automatic Elasticity Library combined with the previously implemented GIBBS method. The first extracts the mechanical properties from automatic self-consistent stress-strain calculations, while the latter employs those mechanical properties to evaluate the thermodynamics within the Debye model. The new thermo-elastic library is benchmarked against a set of 74 experimentally characterized systems to pinpoint a robust computational methodology for the evaluation of bulk and shear moduli, Poisson ratios, Debye temperatures, Gruneisen parameters, and thermal conductivities of a wide variety of materials. The effect of different choices of equations of state is examined and the optimum combination of properties for the Leibfried-Schlomann prediction of thermal conductivity is identified, leading to improved agreement with experimental results than the GIBBS-only approach.

rate research

Read More

Accelerating the calculations of finite-temperature thermodynamic properties is a major challenge for rational materials design. Reliable methods can be quite expensive, limiting their effective applicability in autonomous high-throughput workflows. Here, the 3-phonons quasi-harmonic approximation (QHA) method is introduced, requiring only three phonon calculations to obtain a thorough characterization of the material. Leveraging a Taylor expansion of the phonon frequencies around the equilibrium volume, the method efficiently resolves the volumetric thermal expansion coefficient, specific heat at constant pressure, the enthalpy, and bulk modulus. Results from the standard QHA and experiments corroborate the procedure, and additional comparisons are made with the recently developed self-consistent QHA. The three approaches - 3-phonons, standard, and self- consistent QHAs - are all included within the automated, open-source framework AFLOW, allowing automated determination of properties with various implementations within the same framework.
The MechElastic Python package evaluates the mechanical and elastic properties of bulk and 2D materials using the elastic coefficient matrix ($C_{ij}$) obtained from any ab-initio density-functional theory (DFT) code. The current version of this package reads the output of VASP, ABINIT, and Quantum Espresso codes (but it can be easily generalized to any other DFT code) and performs the appropriate post-processing of elastic constants as per the requirement of the user. This program can also detect the input structures crystal symmetry and test the mechanical stability of all crystal classes using the Born-Huang criteria. Various useful material-specific properties such as elastic moduli, longitudinal and transverse elastic wave velocities, Debye temperature, elastic anisotropy, 2D layer modulus, hardness, Pughs ratio, Cauchys pressure, Kleinman parameter, and Lames coefficients, can be estimated using this program. Another existing feature of this program is to employ the ELATE package [J. Phys.: Condens. Matter 28, 275201 (2016)] and plot the spatial variation of several elastic properties such as Poissons ratio, linear compressibility, shear modulus, and Youngs modulus in three dimensions. Further, the MechElastic package can plot the equation of state (EOS) curves for energy and pressure for a variety of EOS models such as Murnaghan, Birch, Birch-Murnaghan, and Vinet, by reading the inputted energy/pressure versus volume data obtained via numerical calculations or experiments. This package is particularly useful for the high-throughput analysis of elastic and mechanical properties of materials.
The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, impeding a comprehensive perspective on the effects of temperature and composition on materials stability and synthesizability. Here, we use the SISSO (sure independence screening and sparsifying operator) approach to identify a simple and accurate descriptor to predict G for stoichiometric inorganic compounds with ~50 meV/atom (~1 kcal/mol) resolution, and with minimal computational cost, for temperatures ranging from 300-1800 K. We then apply this descriptor to ~30,000 known materials curated from the Inorganic Crystal Structure Database (ICSD). Using the resulting predicted thermochemical data, we generate thousands of temperature-dependent phase diagrams to provide insights into the effects of temperature and composition on materials synthesizability and stability and to establish the temperature-dependent scale of metastability for inorganic compounds.
Machine learning approaches, enabled by the emergence of comprehensive databases of materials properties, are becoming a fruitful direction for materials analysis. As a result, a plethora of models have been constructed and trained on existing data to predict properties of new systems. These powerful methods allow researchers to target studies only at interesting materials $unicode{x2014}$ neglecting the non-synthesizable systems and those without the desired properties $unicode{x2014}$ thus reducing the amount of resources spent on expensive computations and/or time-consuming experimental synthesis. However, using these predictive models is not always straightforward. Often, they require a panoply of technical expertise, creating barriers for general users. AFLOW-ML (AFLOW $underline{mathrm{M}}$achine $underline{mathrm{L}}$earning) overcomes the problem by streamlining the use of the machine learning methods developed within the AFLOW consortium. The framework provides an open RESTful API to directly access the continuously updated algorithms, which can be transparently integrated into any workflow to retrieve predictions of electronic, thermal and mechanical properties. These types of interconnected cloud-based applications are envisioned to be capable of further accelerating the adoption of machine learning methods into materials development.
The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا