Do you want to publish a course? Click here

Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

142   0   0.0 ( 0 )
 Added by S\\\"oren Jalas
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR, or even suppress it, and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.

rate research

Read More

Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle in- cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10-100) MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.
Total charge and energy evaluations for the electron beams generated in the laser wakefield acceleration (LWFA) is the primary step in the determination of the required target and laser parameters. Particle-in-cell (PIC) simulations is an efficient numerical tool that can provide such evaluations unless the effect of numerical dispersion is not diminished. The numerical dispersion, which is specific for the PIC modeling, affects not only the dephasing lengths in LWFA but also the total amount of the self-injected electrons. A numerical error of the order of $10^{-4}-10^{-3}$ in the calculation of the speed of light results in a significant error in the total injected charge and energy gain of the accelerated electron bunches. In the standard numerical approach, the numerical correction of the speed of light either requires infinitely small spatial grid resolution (which needs large computation platform) or force to compromise with the numerical accuracy. A simple and easy to implement numerical scheme is shown to suppress the numerical dispersion of the electromagnetic pulse in PIC simulations even with a modest spatial resolution, and without any special treatments to the core structure of the numerical algorithm. Evaluated charges of the self-injected electron bunches become essentially lower owing to the better calculations of the wake phase velocity.
The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.
A possible solution to the unexplained high intensity hard x-ray (HXR) emission observable during solar flares was investigated via 3D fully relativistic, electromagnetic particle-in-cell (PIC) simulations with realistic ion to electron mass ratio. A beam of accelerated electrons was injected into a magnetised, Maxwellian, homogeneous and inhomogeneous background plasma. The electron distribution function was unstable to the beam-plasma instability and was shown to generate Langmuir waves, while relaxing to plateau formation. In order to estimate the role of the background density gradient on an unbound (infinite spatial extent) beam, three different scenarios were investigated: a) a uniform density background; b) a weak density gradient, n_R/n_L=3; c) a strong gradient case, n_R/n_L=10, where n_R and n_L denote background electron densities on the left and right edges of the simulation box respectively. The strong gradient case produced the largest fraction of electrons beyond 15 v_th. Further, two cases (uniform and strong gradient background) with spatially localized beam injections were performed aiming to show drifts of the generated Langmuir wave wavenumbers, as suggested in previous studies. For the strong gradient case, the Langmuir wave power is shown to drift to smaller wavenumbers, as found in previous quasi-linear simulations.
85 - K. Lotov , P. Tuev 2021
A new regime of proton-driven plasma wakefield acceleration is discovered, in which the plasma nonlinearity increases the phase velocity of the excited wave compared to that of the protons. If the beam charge is much larger than minimally necessary to excite a nonlinear wave, there is sufficient freedom in choosing the longitudinal plasma density profile to make the wave speed close to the speed of light. This allows electrons or positrons to be accelerated to about 200 GeV with a 400 GeV proton driver.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا