Tunable Photonic Radiofrequency Filter with An Ultra-high Out-Of-Band Rejection


Abstract in English

As radiofrequency filtering plays a vital role in electromagnetic devices and systems, recently photonic techniques have been intensively studied to implement radiofrequency filters to harness wide frequency coverage, large instantaneous bandwidth, low frequency-dependent loss, flexible tunability and strong immunity to electromagnetic interference. However, one crucial challenge facing the photonic radiofrequency filter (PRF) is the less impressive out-of-band rejection. Here, to the best of our knowledge, we demonstrate a tunable PRF with a record out-of-band rejection of 80 dB, which is 3 dB higher than the maximum value (~77 dB) reported so far, when incorporating highly selective polarization control and large narrow-band amplification enabled by stimulated Brillouin scattering effect. In particular, this record rejection is arduous to be achieved for a narrow passband (e.g., a few megahertz) and a high finesse in a PRF. Moreover, the proposed PRF is an active one capable of providing negligible insertion loss and even signal gain. Tunable central frequency ranging from 2.1 to 6.1 GHz is also demonstrated. The proposed PRF will provide an ultra-high noise or clutter suppression for harsh electromagnetic scenarios, particularly when room-temperature implementation and remote distribution are needed.

Download