Do you want to publish a course? Click here

Laser controlled charge-transfer reaction at low temperatures

86   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the low-temperature charge transfer reaction between a neutral atom and an ion under the influence of near-resonant laser light. By setting up a multi-channel model with field-dressed states we demonstrate that the reaction rate coefficient can be enhanced by several orders of magnitude with laser intensities of $10^6$ W/cm$^2$ or larger. In addition, depending on laser frequency one can induce a significant enhancement or suppression of the charge-exchange rate coefficient. For our intensities multi-photon processes are not important.



rate research

Read More

Penning ionization reactions in merged beams with precisely controlled collision energies have been shown to accurately probe quantum mechanical effects in reactive collisions. A complete microscopic understanding of the reaction is, however, faced with two major challenges---the highly excited character of the reactions entrance channel and the limited precision of even the best state-of-the-art ab initio potential energy surfaces. Here, we suggest photoassociation spectroscopy as a tool to identify the character of orbiting resonances in the entrance channel and probe the ionization width as a function of inter-particle separation. We introduce the basic concept and discuss the general conditions under which this type of spectroscopy will be successful.
Trapped Be+ ions are a leading platform for quantum information science [1], but reactions with background gas species, such as H2 and H2O, result in qubit loss. Our experiment reveals that the BeOH+ ion is the final trapped ion species when both H2 and H2O exist in a vacuum system with cold, trapped Be+. To understand the loss mechanism, low-temperature reactions between sympathetically cooled BeD+ ions and H2O molecules have been investigated using an integrated, laser-cooled Be+ ion trap and high-resolution Time-of-Flight (TOF) mass spectrometer (MS) [2]. Among all the possible products,BeH2O+, H2DO+, BeOD+, and BeOH+, only the BeOH+ molecular ion was observed experimentally, with the assumed co-product of HD. Theoretical analyses based on explicitly correlated restricted coupled cluster singles, doubles, and perturbative triples (RCCSD(T)-F12) method with the augmented correlation-consistent polarized triple zeta (AVTZ) basis set reveal that two intuitive direct abstraction product channels, Be + H2DO+ and D + BeH2O+, are not energetically accessible at the present reaction temperature (~150 K). Instead, a double displacement BeOH+ + HD product channel is accessible due to a large exothermicity of 1.885 eV through a submerged barrier in the reaction pathway. While the BeOD+ + H2 product channel has a similar exothermicity, the reaction pathway is dynamically unfavourable, as suggested by a Sudden Vector Projection analysis. This work sheds light on the origin of the loss and contaminations of the laser-cooled Be+ ions in quantum-information experiments.
Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carrying pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of H- and COOH- terminated edge carbon sites with such corrugated substrate morphology allows formation of ZE-O2- paramagnetic complexes characterized by small (<50 meV) binding energies and also explains their irreversible dissociation as revealed by EPR.
Configuration transitions of individual molecules and atoms on surfaces are traditionally described with energy barriers and attempt rates using an Arrhenius law. This approach yields consistent energy barrier values, but also attempt rates orders of magnitude below expected oscillation frequencies of particles in the meta-stable state. Moreover, even for identical systems, the measurements can yield values differing from each other by orders of magnitude. Using low temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl-sulfide molecule (DBS) on Au(111), we show that we can avoid these apparent inconsistencies if we account for the relative position of tip apex and molecule with accuracy of a fraction of the molecule size. Altering the tip position on that scale modifies the transitions barrier and attempt rate in a highly correlated fashion, which on account of the relation between the latter and entropy results in a single-molecular enthalpy-entropy compensation. By appropriately positioning the tip apex the STM tip can be used to select the operating point on the compensation line and modify the transition rates. The results highlight the need to consider entropy in transition rates of a single molecule, even at temperatures where entropy effects are usually neglected.
We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost no energy through the interaction with the laser pulse.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا