Do you want to publish a course? Click here

A Feature-Enriched Neural Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging

97   0   0.0 ( 0 )
 Added by Xinchi Chen
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Recently, neural network models for natural language processing tasks have been increasingly focused on for their ability of alleviating the burden of manual feature engineering. However, the previous neural models cannot extract the complicated feature compositions as the traditional methods with discrete features. In this work, we propose a feature-enriched neural model for joint Chinese word segmentation and part-of-speech tagging task. Specifically, to simulate the feature templates of traditional discrete feature based models, we use different filters to model the complex compositional features with convolutional and pooling layer, and then utilize long distance dependency information with recurrent layer. Experimental results on five different datasets show the effectiveness of our proposed model.



rate research

Read More

Chinese word segmentation and dependency parsing are two fundamental tasks for Chinese natural language processing. The dependency parsing is defined on word-level. Therefore word segmentation is the precondition of dependency parsing, which makes dependency parsing suffer from error propagation and unable to directly make use of the character-level pre-trained language model (such as BERT). In this paper, we propose a graph-based model to integrate Chinese word segmentation and dependency parsing. Different from previous transition-based joint models, our proposed model is more concise, which results in fewer efforts of feature engineering. Our graph-based joint model achieves better performance than previous joint models and state-of-the-art results in both Chinese word segmentation and dependency parsing. Besides, when BERT is combined, our model can substantially reduce the performance gap of dependency parsing between joint models and gold-segmented word-based models. Our code is publicly available at https://github.com/fastnlp/JointCwsParser.
154 - Zhiqing Sun , Zhi-Hong Deng 2018
Previous traditional approaches to unsupervised Chinese word segmentation (CWS) can be roughly classified into discriminative and generative models. The former uses the carefully designed goodness measures for candidate segmentation, while the latter focuses on finding the optimal segmentation of the highest generative probability. However, while there exists a trivial way to extend the discriminative models into neural version by using neural language models, those of generative ones are non-trivial. In this paper, we propose the segmental language models (SLMs) for CWS. Our approach explicitly focuses on the segmental nature of Chinese, as well as preserves several properties of language models. In SLMs, a context encoder encodes the previous context and a segment decoder generates each segment incrementally. As far as we know, we are the first to propose a neural model for unsupervised CWS and achieve competitive performance to the state-of-the-art statistical models on four different datasets from SIGHAN 2005 bakeoff.
Multi-criteria Chinese word segmentation (MCCWS) aims to exploit the relations among the multiple heterogeneous segmentation criteria and further improve the performance of each single criterion. Previous work usually regards MCCWS as different tasks, which are learned together under the multi-task learning framework. In this paper, we propose a concise but effective unified model for MCCWS, which is fully-shared for all the criteria. By leveraging the powerful ability of the Transformer encoder, the proposed unified model can segment Chinese text according to a unique criterion-token indicating the output criterion. Besides, the proposed unified model can segment both simplified and traditional Chinese and has an excellent transfer capability. Experiments on eight datasets with different criteria show that our model outperforms our single-criterion baseline model and other multi-criteria models. Source codes of this paper are available on Github https://github.com/acphile/MCCWS.
Chinese word segmentation (CWS) is often regarded as a character-based sequence labeling task in most current works which have achieved great success with the help of powerful neural networks. However, these works neglect an important clue: Chinese characters incorporate both semantic and phonetic meanings. In this paper, we introduce multiple character embeddings including Pinyin Romanization and Wubi Input, both of which are easily accessible and effective in depicting semantics of characters. We propose a novel shared Bi-LSTM-CRF model to fuse linguistic features efficiently by sharing the LSTM network during the training procedure. Extensive experiments on five corpora show that extra embeddings help obtain a significant improvement in labeling accuracy. Specifically, we achieve the state-of-the-art performance in AS and CityU corpora with F1 scores of 96.9 and 97.3, respectively without leveraging any external lexical resources.
Chinese word segmentation (CWS) is a fundamental step of Chinese natural language processing. In this paper, we build a new toolkit, named PKUSEG, for multi-domain word segmentation. Unlike existing single-model toolkits, PKUSEG targets at multi-domain word segmentation and provides separate models for different domains, such as web, medicine, and tourism. The new toolkit also supports POS tagging and model training to adapt to various application scenarios. Experiments show that PKUSEG achieves high performance on multiple domains. The toolkit is now freely and publicly available for the usage of research and industry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا