Do you want to publish a course? Click here

Mating quadratic maps with the modular group II

87   0   0.0 ( 0 )
 Added by Luna Lomonaco
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In 1994 S. Bullett and C. Penrose introduced the one complex parameter family of $(2:2)$ holomorphic correspondences $mathcal{F}_a$: $$left(frac{aw-1}{w-1}right)^2+left(frac{aw-1}{w-1}right)left(frac{az+1}{z+1}right) +left(frac{az+1}{z+1}right)^2=3$$ and proved that for every value of $a in [4,7] subset mathbb{R}$ the correspondence $mathcal{F}_a$ is a mating between a quadratic polynomial $Q_c(z)=z^2+c,,,c in mathbb{R}$ and the modular group $Gamma=PSL(2,mathbb{Z})$. They conjectured that this is the case for every member of the family $mathcal{F}_a$ which has $a$ in the connectedness locus. We prove here that every member of the family $mathcal{F}_a$ which has $a$ in the connectedness locus is a mating between the modular group and an element of the parabolic quadratic family $Per_1(1)$.



rate research

Read More

We prove that there exists a homeomorphism $chi$ between the connectedness locus $mathcal{M}_{Gamma}$ for the family $mathcal{F}_a$ of $(2:2)$ holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set $mathcal{M}_1$. The homeomorphism $chi$ is dynamical ($mathcal{F}_a$ is a mating between $PSL(2,mathbb{Z})$ and $P_{chi(a)}$), it is conformal on the interior of $mathcal{M}_{Gamma}$, and it extends to a homeomorphism between suitably defined neighbourhoods in the respective one parameter moduli spaces. Following the recent proof by Petersen and Roesch that $mathcal{M}_1$ is homeomorphic to the classical Mandelbrot set $mathcal{M}$, we deduce that $mathcal{M}_{Gamma}$ is homeomorphic to $mathcal{M}$.
238 - John R. Doyle 2017
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic points for a quadratic polynomial map may be endowed with the structure of a directed graph satisfying certain strict conditions; we call such a graph admissible. Given an admissible graph $G$, we construct a curve $X_1(G)$ whose points parametrize quadratic polynomial maps -- which, up to equivalence, form a one-parameter family -- together with a collection of marked preperiodic points that form a graph isomorphic to $G$. Building on work of Bousch and Morton, we show that these curves are irreducible in characteristic zero, and we give an application of irreducibility in the setting of number fields. We end with a discussion of the Galois theory associated to the preperiodic points of quadratic polynomials, including a certain Galois representation that arises naturally in this setting.
139 - Jonguk Yang 2014
Consider a quadratic polynomial with a fixed Siegel disc of bounded type. Using an adaptation of complex a priori bounds for critical circle maps, we prove that this Siegel polynomial is conformally mateable with the basilica polynomial.
156 - Shilei Fan , Yanqi Qiu 2017
In this note, we give a nature action of the modular group on the ends of the infinite (p + 1)-cayley tree, for each prime p. We show that there is a unique invariant probability measure for each p.
Extended modular group $bar{Pi}=<R,T,U:R^2=T^2=U^3=(RT)^2=(RU)^2=1>$, where $ R:zrightarrow -bar{z}, sim T:zrightarrowfrac{-1}{z},simU:zrightarrowfrac{-1}{z +1} $, has been used to study some properties of the binary quadratic forms whose base points lie in the point set fundamental region $F_{bar{Pi}}$ (See cite{Tekcan1, Flath}). In this paper we look at how base points have been used in the study of equivalent binary quadratic forms, and we prove that two positive definite forms are equivalent if and only if the base point of one form is mapped onto the base point of the other form under the action of the extended modular group and any positive definite integral form can be transformed into the reduced form of the same discriminant under the action of the extended modular group and extend these results for the subset $QQ^*(sqrt{-n})$ of the imaginary quadratic field $QQ(sqrt{-m})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا