No Arabic abstract
We present new results on the evolution of rest-frame blue/UV sizes and Sersic indices of H$alpha$-selected star-forming galaxies over the last 11 Gyrs. We investigate how the perceived evolution can be affected by a range of biases and systematics such as cosmological dimming and resolution effects. We use GALFIT and an artificial redshifting technique, which includes the luminosity evolution of H$alpha$-selected galaxies, to quantify the change on the measured structural parameters with redshift. We find typical sizes of 2 to 3 kpc and Sersic indices of n~1.2, close to pure exponential disks all the way from z=2.23 to z=0.4. At z=0 we find typical sizes of 4-5 kpc. Our results show that, when using GALFIT, cosmological dimming has a negligible impact on the derived effective radius for galaxies with <10 kpc, but we find a ~20% bias on the estimate of the median Sersic indices, rendering galaxies more disk-like. Star-forming galaxies have grown on average by a factor of 2-3 in the last 11 Gyrs with $r_epropto(1+z)^{-0.75}$. By exploring the evolution of the stellar mass-size relation we find evidence for a stronger size evolution of the most massive star-forming galaxies since z~2, as they grow faster towards z~0 when compared to the lower stellar mass counterparts. As we are tracing the rest-frame blue/UV, we are likely witnessing the growth of disks where star formation is ongoing in galaxies while their profiles remain close to exponential disks, n<1.5, across the same period.
We present new determinations of the stellar-to-halo mass relation (SHMR) at $z=0-10$ that match the evolution of the galaxy stellar mass function, the SFR$-M_*$ relation,and the cosmic star formation rate. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates, and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings: (1) The halo mass $M_{50}$ above which 50% of galaxies are quenched coincides with sSFR/sMAR$sim1$, where sMAR is the specific halo mass accretion rate. (2) $M_{50}$ increases with redshift, presumably due to cold streams being more efficient at high redshift while virial shocks and AGN feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around $M_{rm vir}sim2times10^{11}M_{odot}$. (4) The stellar mass density within 1 kpc, $Sigma_1$, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in $Sigma_1$, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower-mass galaxies. (7) Galaxies grow inside out. The marked change in the slope of the size--mass relation when galaxies became quenched, from $dlog R_{rm eff}/dlog M_*sim0.35$ to $sim2.5$, could be the result of dry minor mergers.
We present the KMOS Galaxy Evolution Survey (KGES), a $K$-band Multi-Object Spectrograph (KMOS) study of the H$alpha$ and [NII] emission from 288 $K$ band-selected galaxies at $1.2 lesssim z lesssim 1.8$, with stellar masses in the range $log_{10}(M_{*}/rm{M}_{odot})approx$9-11.5. In this paper, we describe the survey design, present the sample, and discuss the key properties of the KGES galaxies. We combine KGES with appropriately matched samples at lower redshifts from the KMOS Redshift One Spectroscopic Survey (KROSS) and the SAMI Galaxy Survey. Accounting for the effects of sample selection, data quality, and analysis techniques between surveys, we examine the kinematic characteristics and angular momentum content of star-forming galaxies at $zapprox1.5$, $approx1$ and $approx0$. We find that stellar mass, rather than redshift, most strongly correlates with the disc fraction amongst star-forming galaxies at $z lesssim 1.5$, observing only a modest increase in the prevalence of discs between $zapprox1.5$ and $zapprox0.04$ at fixed stellar mass. Furthermore, typical star-forming galaxies follow the same median relation between specific angular momentum and stellar mass, regardless of their redshift, with the normalisation of the relation depending more strongly on how disc-like a galaxys kinematics are. This suggests that massive star-forming discs form in a very similar manner across the $approx$ 10 Gyr encompassed by our study and that the inferred link between the angular momentum of galaxies and their haloes does not change significantly across the stellar mass and redshift ranges probed in this work.
We analyse maps of the spatially-resolved nebular emission of $approx$1500 star-forming galaxies at $zapprox0.6$-$2.2$ from deep KMOS and MUSE observations to measure the average shape of their rotation curves. We use these to test claims for declining rotation curves at large radii in galaxies at $zapprox1$-$2$ that have been interpreted as evidence for an absence of dark matter. We show that the shape of the average rotation curves, and the extent to which they decline beyond their peak velocities, depends upon the normalisation prescription used to construct the average curve. Normalising in size by the galaxy stellar disk-scale length after accounting for seeing effects ($R_{rm{d}}^{prime}$), we construct stacked position-velocity diagrams that trace the average galaxy rotation curve out to $6R_{rm{d}}^{prime}$ ($approx$13 kpc, on average). Combining these curves with average HI rotation curves for local systems, we investigate how the shapes of galaxy rotation curves evolve over $approx$10 Gyr. The average rotation curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift is approximately flat, or continues to rise, out to at least $6R_{rm{d}}^{prime}$. We find a trend between the outer slopes of galaxies rotation curves and their stellar mass surface densities, with the higher surface density systems exhibiting flatter rotation curves. Drawing comparisons with hydrodynamical simulations, we show that the average shapes of the rotation curves for our sample of massive, star-forming galaxies at $zapprox0$-$2.2$ are consistent with those expected from $Lambda$CDM theory and imply dark matter fractions within $6R_{rm{d}}$ of at least $approx60$ percent.
For the first time, we present the size evolution of a mass-complete (log(M*/Msol)>10) sample of star-forming galaxies over redshifts z=1-7, selected from the FourStar Galaxy Evolution Survey (ZFOURGE). Observed H-band sizes are measured from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Hubble Space Telescope (HST)/F160W imaging. Distributions of individual galaxy masses and sizes illustrate that a clear mass-size relation exists up to z~7. At z~7, we find that the average galaxy size from the mass-size relation is more compact at a fixed mass of log(M*/Msol)=10.1, with r_1/2,maj=1.02+/-0.29 kpc, than at lower redshifts. This is consistent with our results from stacking the same CANDELS HST/F160W imaging, when we correct for galaxy position angle alignment. We find that the size evolution of star-forming galaxies is well fit by a power law of the form r_e = 7.07(1 + z)^-0.89 kpc, which is consistent with previous works for normal star-formers at 1<z<4. In order to compare our slope with those derived Lyman break galaxy studies, we correct for different IMFs and methodology and find a slope of -0.97+/-0.02, which is shallower than that reported for the evolution of Lyman break galaxies at z>4 (r_epropto(1 +z)^-1.2+/-0.06). Therefore, we conclude the Lyman break galaxies likely represent a subset of highly star-forming galaxies that exhibit rapid size growth at z>4.
We use the Hubble Space Telescope (HST) archive of ultraviolet (UV) quasar spectroscopy to conduct the first blind survey for damped Ly-alpha absorbers (DLAs) at low redshift (z < 1.6). Our statistical sample includes 463 quasars with spectral coverage spanning a total redshift path, dz = 123.3 or an absorption path, dX = 229.7. Within this survey path, we identify 4 DLAs, defined as absorbers with HI column density N(HI) >= 10^20.3cm-2, which implies an incidence per absorption length, l(X)= 0.017(+0.014-0.008) at a median survey path redshift of z=0.623. While our estimate of l(X) is lower than earlier estimates at z ~ 0 from HI 21cm emission studies, the results are consistent within the measurement uncertainties. Our dataset is too small to properly sample the N(HI) frequency distribution function f(N(HI),X), but the observed distribution agrees with previous estimates at z > 2. Adopting the z > 2 shape of f(N(HI),X), we infer an HI mass density at z ~ 0.6 of rho_HI = 0.25(+0.20-0.12) x 10^8 Msol Mpc-3. This is significantly lower than previous estimates from targeted DLA surveys with the HST, but consistent with results from low-z HI 21cm observations, and suggests that the neutral gas density of the universe has been decreasing over the past 10 Gyrs.